37. A Remark on the Goldbach-Vinogradov Theorem. By Kanesiroo ISEKI. (Comm. by Z. SUETUNA, M. J. A., June 16, 1949.) It was proved in 1937 by Vinogradov (1) that every odd number from a certain point onwards can be expressed as a sum of three primes, and an asymptotic formula was also given for the number of representations. But by slight modifications of his proof we can extend his result to the following form: **Theorem.** Let k be a positive integer, and let r_1, r_2, r_3 be integers relatively prime to k. Then there exists a number $N_0 = N_0(k) > 3$ depending only on k such that every odd number N greater than N_0 and congruent to $r_1 + r_2 + r_3 \pmod{k}$ can be represented in the form $$N = p_1 + p_2 + p_3$$, where p_n is a prime number congruent to $r_n \pmod{k}$ for n = 1, 2, 3. The number of such representations is expressed for $N > N_0$ asymptotically by (1) $$\frac{N^2}{2\log^3 N} - \frac{S(N)}{\gamma(N;R)} (1+\lambda),$$ where $$S(N) = \sum_{q=1}^{\infty} \frac{\mu(q)}{\varphi^{3}(q)} \sum_{\substack{(a,q)=1\\0 \le a < q}} e^{2\pi i \frac{a}{q} N}$$ $\gamma(N;k)$ is the number of solutions (x_1,x_2,x_3) of the congruence $x_1+x_2+x_3\equiv N \pmod{k}$, x_n being an integer such that $0 \le x_n < k$ and $(k, x_n) = 1$ for each n = 1, 2,3; and further $$\lambda=\lambda (N; k,r_1,r_2,r_8)$$, $$|\lambda| < K(\log N)^{-\frac{1}{2}} \log \log N,$$ with K=K(k) a positive number depending on k alone. Let us mention, in passing, that the above function S(N) is known to admit of the expression (2) $$S(N) = \prod_{p} \left\{ 1 + \frac{1}{(p-1)^3} \right\} \prod_{p \mid N} \frac{(p-1)(p-2)}{p^2 - 3p + 3} ,$$ while we can easily deduce the equality $$\gamma(N;k) = k^2 \prod_{p|(N,k)} \frac{(p-1)(p-2)}{p^2-3p+3} \prod_{p|k} \frac{p^2-3p+3}{p^2},$$ from the multiplicative property of $\gamma(N;k)$, namely $$\gamma(N; k_1k_2) = \gamma(N; k_1)\gamma(N; k_2) \text{ if } (k_1, k_2) = 1.$$ Now we shall expound briefly the method of proof. By the aid