82. A Remark on the Abstract Analyticity in Time for Solutions of a Parabolic Equation

By Taira Shirota
Osaka University
(Comm. by K. Kunugi, m.J.A., July 13, 1959)

1. Consider an equation of evolution

$$
\begin{equation*}
d u / d t=A(t) u \tag{1.1}
\end{equation*}
$$

where the differential operator

$$
A(t)=\sum_{i, j=1}^{m} a^{i j}(t, x) \frac{\partial^{2}}{\partial x_{i} \partial x_{j}}+\sum_{i=1}^{m} b^{i}(t, x) \frac{\partial}{\partial x_{i}}+c(t, x)
$$

is elliptic on a domain G of an m-dimensional Euclidean space. As for the case when all the coefficients of $A(t)$ are independent of t, K. Yosida [7] extended the result of S. Itô and H. Yamabe [5, 6].

In the present note the author will give a direct proof of K. Yosida's result under an assumption that all the coefficients $a^{i j}(t, x)$, $b^{i}(t, x), c(t, x)$ are uniformly analytic in t for any x in G.

The method is based upon the idea of C. B. Morrey and L. Nierenberg [2]. The result, which is applicable to the unique continuation problem of (1.1) [1], is obviously extended with respect to certain distribution solutions of generalized parabolic equations [4].
2. For the sake of simplicity, we shall discuss the case $G=E^{m}$ and assume that the real coefficients $a^{i j}(t, x), b^{i}(t, x)$, and $c(t, x)$ are sufficiently differentiable such that

$$
\begin{aligned}
& D_{x}^{(k)} D_{t}^{(p)} a^{i j}(t, x), \quad D_{x}^{(k)} D_{t}^{(p)} b^{i}(t, x), \quad D_{t}^{(p)} c(t, x) \\
& \quad\left(k=0,1,2 ; \quad k^{\prime}=0,1 ; p=0,1,2,3, \cdots\right)
\end{aligned}
$$

are continuous over $[-1,1] \times E^{m}$, and that there are two positive numbers L and K such that

$$
\begin{gather*}
\underset{\substack{k=0,1 \\
i, j=1,2, \ldots, m}}{\operatorname{Max}}\left\{\left|D_{x}^{(k)} a^{i j}(t, x)\right|,\left|b^{i}(t, x)\right|,|c(t, x)|\right\} \leqq L, \tag{2.1}\\
\operatorname{Max}_{\substack{p=0,1,2 \\
i, j=1,2, \cdots, m}}\left\{\left|D_{t}^{(p)} a^{i j}(t, x)\right|,\left|D_{t}^{(p)} b^{i}(t, x)\right|,\left|D_{t}^{(p)} C(t, x)\right|\right\} \leqq L p!K^{p} \tag{2.2}
\end{gather*}
$$

for any $x \in E^{m}, t \in(-1,1)$. Moreover there are two positive γ and δ such that

$$
\begin{equation*}
\gamma \sum_{i=1}^{m} \xi_{i}^{2} \geqq \sum_{i, j=1}^{m} a^{i j}(t, x) \xi_{i} \xi_{j} \geqq \delta \sum_{i=1}^{m} \xi_{i}^{2} \tag{2.3}
\end{equation*}
$$

for any $x \in E^{m}, t \in(-1,1)$ and for any real $\xi=\left(\xi_{1}, \cdots, \xi_{m}\right)$. Set

$$
\|f(t, x)\|_{r}^{2}=\int_{-r}^{r} \int_{E^{m}}|f(t, x)|^{2} d x d t
$$

and

$$
\overline{A(t)}=A(t)-\alpha
$$

