214. Sur une certaine classe d'opérateurs différentiels ordinaires, elliptiques et dégénérés

Par Norio SHIMAKURA

(Comm. by Kinjirô Kunugi, M. J. A., Nov. 12, 1968)

1. Opérateurs traités L et espaces de Sobolev avec poids W_k^m . Désignons par R^1 et par R_+^1 les ensembles des nombres réels et des nombres positifs respectivement. Leur point générique est noté par t. Soient $L^2(R^1)$, $L^2(R^1)$ et $H^r(R_+^1)$ $(r: entier \ge 0)$ l'espace des fonctions mesurables carrés sommables sur R^1 , celui sur R_+^1 et l'espace de Sobolev habituel d'ordre r sur C_+^1 respectivement. La transformée de Fourier de $f(t) \in L^2(R^1)$ est définie par $\mathcal{L}f(\tau) = \int_{-\infty}^{+\infty} e^{-it\tau} f(t) dt$.

Nous traitons dans ce mémoire un opérateur L de la forme

$$Lu(t) \equiv L(t; D_t)u(t) \equiv \sum_{h=0}^{k} P^h(D_t) \{ t^{k-h} u(t) \}$$
 (1)

sur la demi-droite R_{+}^{1} , où $D_{t}=i^{-1}d/dt$, et

(i) Les $P^h(D_t)$ $(0 \le h \le k)$ sont des opérateurs différentiels ordinaires d'ordre $\le (m-h)$ à coefficients constants complexes:

$$P^{h}(D_{t}) = \sum_{j=0}^{m-h} p_{j}^{h} D_{t}^{j}, \quad (p_{j}^{h} \in C, \ 0 \le h \le k \ et \ 0 \le j \le m-h)$$
 (2)

et les k et m sont deux entiers donnés tels que

$$0 < k < m$$
; (3)

(ii) Parmi eux, $P^0(D_t)$ est un opérateur elliptique d'ordre m avec $p_m^0=1$, c'est-à-dire, le polynôme $P^0(\tau)$ ne s'annule jamais sur \mathbb{R}^1 .

Soient m_+ et m_- les nombres des zéros du polynôme $P^0(\tau)$ situés dans les demi-espaces ${\rm Im} \tau > 0$ et ${\rm Im} \tau < 0$ respectivement. On a alors $m = m_+ + m_-$. Le cas où $m_+ = 0$ ou $m_- = 0$ est permis.

Nous définissons ensuite l'espace de Sobolev avec poids W_k^m sur lequel opère L. Etant donnés, en général, deux entiers λ et μ tels que $0 \le \mu \le \lambda$, nous désignons par W_{μ}^{λ} l'espace vectoriel complexe défini par

$$W_{u}^{\lambda} = \{ u(t) \in H^{\lambda - \mu}(\mathbf{R}_{+}^{1}) ; t^{\mu}u(t) \in H^{\lambda}(\mathbf{R}_{+}^{1}) \}$$
 (4)

muni de la structure hilbertienne naturelle. Cet espace peut être identifié avec un sous-espace vectoriel de $L^2(\mathbf{R}^1)$ par le prolongement par 0 hors de \mathbf{R}^1_+ de chaque élément. Notons cette application: $W^2_{\mu} \rightarrow L^2(\mathbf{R}^1)$ par $u(t) \rightarrow \tilde{u}(t)$. Et, si $0 < \mu \le \lambda$, alors l'inclusion par identification $W^2_{\mu} \subset W^{2-1}_{\mu-1}$ est continue.

Quel que soit u(t) élément de W^{λ}_{μ} , il existe des valeurs suivantes qui sont majorées par la norme de u(t) dans W^{λ}_{μ} :