A combinatorial approach to Coxeter groups

Bernhard Mühlherr

Aude Nguyen*

1 Introduction

Let $M=\left(m_{i j}\right)_{i, j \in I}$ be a Coxeter matrix over a set I. A Coxeter system of type M is a pair (W, S) consisting of a group W and a set $S=\left\{s_{i} \mid i \in I\right\} \subseteq W$ such that $\left(s_{i} s_{j}\right)^{m_{i j}}=1_{W}$ for all $i, j \in I$ and such that the set of these relations yields a presentation of W; hence such that $W \cong\left\langle S \mid\left(\left(s_{i} s_{j}\right)^{m_{i j}}\right)_{i, j \in I}\right\rangle$ for short. The aim of the present paper is to give a combinatorial proof of the following
Fundamental Fact: Let M be a Coxeter diagram over a set I, let (W, S) be a Coxeter system of type M where $S=\left\{s_{i} \mid i \in I\right\}$. Then the order of the product $s_{i} s_{j}$ is equal to $m_{i j}$ for all $i, j \in I$.

This is well known and obtained by a 2-line argument as a very first observation about the geometric representation of a Coxeter group. It seems therefore appropriate to explain why we are nevertheless interested in replacing this short geometric argument by a combinatorial proof which takes about 20 pages. There are in fact two main reasons.

In [7] Tits solved the word problem for Coxeter groups. In that paper he indicated how to use his result in order to produce a 'combinatorial' proof of the classification of finite Coxeter groups. In [3] it is shown, how to employ folding techniques in order to give a short proof of the classification based on Tits' original idea. This gives hence a proof which does not rely on classification of the positive definite bilinear forms associated to Coxeter matrices (which basically corresponds to Coxeter's original proof in [1] and [2]). However, this proof still relies on the geometric representation of a Coxeter group because the fact above is used in [7] for the solution of the word problem. We also mention that in [6] and [8] the theory of Coxeter groups is developed to a large extent in a purely combinatorial set-up. As both references use the geometric representation only to prove the fact above, the question about a

[^0]
[^0]: *Supported by the Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture

