The closeness of the range of a probability on a certain system of random events — an elementary proof

Vladimír Balek

Ivan Mizera

Abstract

An elementary combinatorial method is presented which can be used for proving the closeness of the range of a probability on specific systems, like the set of all linear or affine subsets of a Euclidean space.

The motivation for this note came from the second author's research in statistics: high breakdown point estimation in linear regression. By a probability distribution P, defined on the Borel σ -field of \mathbb{R}^p , a collection of regression design points is represented; then, a system \mathcal{V} of Borel subsets of \mathbb{R}^p is considered. Typical examples of \mathcal{V} are, for instance, the system \mathcal{V}_1 of all linear, or \mathcal{V}_2 of all affine proper subspaces of \mathbb{R}^p . The question (of some interest in statistical theory) is:

Is there an
$$E_0 \in \mathcal{V}$$
 such that $P(E_0) = \sup\{P(E) \colon E \in \mathcal{V}\}$? (1)

For some of \mathcal{V} , the existence of a desired E_0 can be established using that (a) \mathcal{V} is compact in an appropriate topology; (b) P is lower semicontinuous with respect to the same topology. The construction of the topology may be sometimes tedious; moreover the method does not work if, possibly, certain parts of \mathcal{V} are omitted, making \mathcal{V} noncompact. Also, a more general problem can be considered:

Is the range
$$\{P(E) \colon E \in \mathcal{V}\}$$
 closed? (2)

The positive answer to (2) implies the positive one to (1). The method outlined by (a) and (b) cannot answer (2) — we have only lower semicontinuity, not full continuity.

Bull. Belg. Math. Soc. 4 (1997), 621-624

Received by the editors November 1996.

Communicated by M. Hallin.