Pseudo-Riemannian metrics on tangent bundle and harmonic problems *

Oniciuc C.

Abstract

The problems studied in this paper are related to the harmonicity of the canonical projection $\pi:TM\longrightarrow M$, where (M,g) is a Riemannian space and TM is its tangent bundle, and to the harmonicity of the vector fields $\xi\in\chi(M)$ thought of as maps from M to TM. We have considered on TM the pseudo-Riemannian metrics G, g^c of lift-complete type defined by means of an arbitrary nonlinear connection on TM. We have also studied the harmonicity of a tensor field J of type (1,1) on M, where J is thought of as a map from TM into itself.

Introduction

A vector field ξ on a Riemannian manifold (M,g) can be thought of as a map $\xi: M \longrightarrow TM$, where $\pi: TM \longrightarrow M$ is the tangent bundle of the manifold M. The conditions under which ξ is an isometric immersion, a totally geodesic or harmonic map, have been studied in the cases where one considers on TM the Riemannian metrics defined by Sasaki, Cheeger-Gromoll or the pseudo-Riemannian metrics of complete lift type (see [7], [16], [12], [13], [14], [11]). The conditions under which the canonical projection $\pi:TM\longrightarrow M$ is a totally geodesic or harmonic map have been also studied.

^{*}partially supported by the Grant 64 /1998, Ministerul Educaţiei Naţionale, Romania Received by the editors March 1999.

Communicated by L. Vanhecke.

¹⁹⁹¹ Mathematics Subject Classification: 53C07, 53C20, 58E20.

 $[\]it Key\ words\ and\ phrases\ :$ tangent bundle, harmonic maps, nonlinear connections, pseudo- Riemannian metrics.