Periodic solutions for certain systems of planar complex polynomial equations

Valentina Taddei

1 Introduction

The present paper deals with the existence of T-periodic solutions of the T-periodic system of complex planar equations

$$
\left\{\begin{array}{l}
u^{\prime}=p_{1}(t, u, v) \tag{P}\\
v^{\prime}=p_{2}(t, u, v)
\end{array}\right.
$$

where p_{1} and p_{2} are second order polynomials whose coefficients are T-periodic continuous functions from \mathbb{R} into \mathbb{C}.
Like it will be clear from the examples of the last section, (P) represents a generalization of the well known complex periodic Riccati equation

$$
u^{\prime}=u^{2}+g(t)
$$

where $g: \mathbb{R} \rightarrow \mathbb{C}$ is a continuous T-periodic function.
The existence of periodic solutions of equations of the type

$$
\begin{equation*}
u^{\prime}=\sum_{j=0}^{n} c_{j}(t) u^{j} \tag{E}
\end{equation*}
$$

is an extensively investigated subject.
For example, in 1973 Lloyd [5] studied the problem when the polynomial at the right hand-side has real-valued coefficients.

[^0]
[^0]: Received by the editors December 2000.
 Communicated by J. Mawhin.
 Key words and phrases : Continuation theorem, periodic condition, complex polynomial.

