Modules over (qa)-rings

Hideki Harui

(Received September 17, 1968)

Let R be a commutative ring with unit. When the total quotient ring Q of R is an Artinian ring we call R a ($q a$)-ring. In this paper we are mainly concerned with the theory of modules over such a ring. In §1, some preliminary results are summarized. In $\S 2$ we shall prove the following (Theorem 2. 10): Let R be a ($q a$)-ring with the self-injective total quotient ring, and let M be an h-divisible R-module such that $M / t(M)$ is an injective R module. Then $t(M)$ is a direct summand. Some applications of the preceding result will be discussed in $\S 3$.

The author wishes to express his sincere gratitude to Professor Y. Nakai who gave him many valuable suggestions.

1. Preliminaries

Let R be a commutative ring with 1 and let S be the set of all non zerodivisors in R. The total quotient ring R_{S} is denoted by Q, and K will denote the quotient module Q / R. Let M be a module (always assumed to be unitary) over the ring R. An element x in M is torsion if there is an element s in S such that $s x=0$, and torsion-free otherwise. M is called a torsion module if every element in M is torsion, and a torsion-free module if every element in M is trosion-free. Let M be an R-module. Then as is easily seen there is the unique maximal submodule which is torsion. This submodule will be denoted by $t(M)$ and will be called the torsion submodule of M. An R-module M is torsion-free if and only if $t(M)=0$.

Proposition 1.1. Let M be an R-module. Then we have $t(M) \cong \operatorname{Tor}_{1}^{R}(K, M)$.
Proof. From $0 \rightarrow R \rightarrow Q \rightarrow K \rightarrow 0$, we have the following exact sequence: $0 \rightarrow \operatorname{Tor}_{1}^{R}(Q, M) \rightarrow \operatorname{Tor}_{1}^{R}(K, M) \rightarrow M \rightarrow Q \otimes_{R} K . \quad$ But $\operatorname{Tor}_{1}^{R}(Q, M)=0$ since Q is a flat R-module, and by Proposition 1.4 $\operatorname{Tor}_{1}^{R}(K, M)$ is torsion. Thus $\operatorname{Tor}_{1}^{R}(K, M)$ $\rightarrow t(M)$ is monomorphic. On the other hand, if N is a torsion-free module, then we have a canonical map: $N \rightarrow Q \otimes_{R} N$ is monomorphic. Therefore $\operatorname{Tor}_{1}^{R}(K, M) \rightarrow t(M)$ is an onto R-homomorphism. Thus $t(M) \cong \operatorname{Tor}_{1}^{R}(K, M)$.

Corollary 1. 2. For any R-module M we have the following exact sequence:

$$
0 \rightarrow M / t(M) \rightarrow Q \bigotimes_{R} M \rightarrow K \bigotimes_{R} M \rightarrow 0 .
$$

