Functional Calculus in Locally Convex Algebras

Constantin Apostol (Received October 17, 1969)

Introduction

L. Waelbroeck [16] and G.R. Allan [1] have shown that the contour integral technique is available in the case of locally convex algebras. Successively C.R. Ionescu-Tulcea [9] and F-Y. Maeda [11] considered operators in locally convex spaces which possess a functional calculus with functions in certain algebras containing analytic functions.

In the present paper we study the properties of elements in a locally convex algebra having a functional calculus with either analytic or \mathcal{Q}^{\sim} -functions.

In §2 we give a perturbation formula generalizing a result contained in [3] (see also [4], II, Th. 1.5). In §3 we study the properties of elements which have a functional calculus by means of spectral distributions ([7]). We show that the regularity problem raised in [6], VI, 5(d) has a negative answer in the locally convex case (§4).

§ 1. Notations and preliminaries

Throughout, all linear structures are over the complex field Λ ; Λ_{∞} is the one-point compactification of Λ by ∞ ; R is the real field and N is the set of all natural numbers.

For any $\sigma \in \Lambda$, $\sigma \neq \emptyset$, $0 \leq r < \infty$ we put

$$C(\sigma, r) = \{\lambda \in \Lambda; \text{dist } (\lambda, \sigma) \leq r\}.$$

If $\sigma = \emptyset$ then we put by definition $C(\emptyset, r) = \emptyset$, $0 \le r < \infty$.

The closure in Λ (resp. Λ_{∞}) of a set σ is denoted by cl σ (resp. $cl_{\infty}\sigma$). If we put

$$D\!=\!\frac{1}{2}\!\left(\!\frac{\partial}{\partial \mathrm{Re}\lambda}\!+\!i\frac{\partial}{\partial \mathrm{Im}\lambda}\right), \qquad \bar{D}\!=\!\frac{1}{2}\!\left(\!\frac{\partial}{\partial \mathrm{Re}\lambda}\!-\!i\frac{\partial}{\partial \mathrm{Im}\lambda}\right)$$

then \mathcal{Q}^{∞} denotes the algebra of all infinitely differentiable complex functions on Λ , endowed with the topology determined by the pseudonorms

$$\varphi \to |\varphi|_{n,K} = 2^n \max_{j+k \le n} \sup_{\lambda \in K} |D^j \overline{D}^k \varphi(\lambda)|$$

for K compact and $n \in N$.