On the Stable Homotopy Ring of Moore Spaces

Shichirô Ока

(Received May 17, 1974)

Introduction

Let p be a prime integer $\geqq 5, q=2(p-1)$, and $M_{t}=S^{1} \cup_{t} e^{2}$ be a Moore space of type $\left(Z_{t}, 1\right)$. Denote by $\mathscr{A}_{k}\left(M_{t}\right)$ the stable track group $\left\{S^{k} M_{t}, M_{t}\right\}=$ $\operatorname{Dir} \lim \left\{\left[S^{n+k} M_{t}, S^{n} M_{t}\right], S\right\}, S$ being the suspension functor. Then the direct $\operatorname{sum} \mathscr{A}_{*}\left(M_{p^{r}}\right)=\Sigma_{k} \mathscr{A}_{k}\left(M_{p^{r}}\right)$ is an algebra over $Z_{p^{r}}$ with the multiplication induced by the composition of maps. The structure of the ring $\mathscr{A}_{*}\left(M_{p^{r}}\right)$ is studied by several authors [4] [6] [13] [14].
N. Yamamoto [14] has calculated the ring structure of $\mathscr{A}_{*}\left(M_{p}\right)$ for degree $<p^{2} q-4, q=2(p-1)$, from the results [8] on the stable homotopy ring $G_{*}=$ $\Sigma_{k} G_{k}, G_{k}=\operatorname{Dir} \lim \pi_{n+k}\left(S^{n}\right)$, of spheres. P. Hoffman [4] has introduced a differential in $\mathscr{A}_{*}\left(M_{t}\right)$ and studied the commutativity of the ring $\mathscr{A}_{*}\left(M_{t}\right)$ using this differential. H. Toda [13] has generalized Hoffman's results and obtained several useful relations involving the elements $\beta_{(t)} \in \mathscr{A}_{(t p+t-1) q-1}\left(M_{p}\right)$.

The purpose of this paper is to determine the ring structure of $\mathscr{A}_{*}\left(M_{p^{r}}\right)$ for any $r \geqq 1$, within the limits of degree less than $\left(p^{2}+3 p+1\right) q-6$.

Let $i\left(=i_{r}\right): S^{1} \rightarrow M_{p^{r}}$ and $\pi\left(=\pi_{r}\right): M_{p^{r}} \rightarrow S^{2}$ denote the natural maps and set $\delta\left(=\delta_{r}\right)=i \pi \in \mathscr{A}_{-1}\left(M_{p^{r}}\right)$. We have in Proposition 2.3 a direct sum decomposition for odd t :

$$
\mathscr{A}_{k}\left(M_{t}\right) \approx G_{k+1} \otimes Z_{t}+G_{k} \otimes Z_{t}+G_{k} * Z_{t}+G_{k-1} * Z_{t} .
$$

Let $H \approx Z_{p^{s}}$ be a summand of G_{k} generated by an element γ. Then H gives summands $Z_{p^{m}}, Z_{p^{m}}+Z_{p^{m}}$ and $Z_{p^{m}}, m=\min \{r, s\}$, of $\mathscr{A}_{k+1}\left(M_{p^{r}}\right), \mathscr{A}_{k}\left(M_{p^{r}}\right)$ and $\mathscr{A}_{k-1}\left(M_{p^{r}}\right)$, via the above decomposition. In $\S 3$, we construct elements $[\gamma]$ $\left(=[\gamma]_{r}\right) \in \mathscr{A}_{k+1}\left(M_{p^{r}}\right)$ and $\langle\gamma\rangle\left(=\langle\gamma\rangle_{r}\right) \in \mathscr{A}_{k}\left(M_{p^{r}}\right)$ for γ above, and we see in Lemma 3.3 that we can take the elements $[\gamma],[\gamma] \delta,\langle\gamma\rangle$ and $\langle\gamma\rangle \delta$ for the generators of four cyclic summands of $\mathscr{A}_{*}\left(M_{p^{r}}\right)$ given by H. Thus the additive structure of $\mathscr{A}_{*}\left(M_{p^{r}}\right)$ is described by using such elements (Theorem 3.5).

In Propositions 3.8-3.9, we discuss the relations of the products $\langle\alpha\rangle[\beta]$ and $[\alpha][\beta]$ in $\mathscr{A}_{*}\left(M_{p^{r}}\right)$ with the composition $\alpha \beta$ and the Toda bracket $\langle\alpha$, $\left.p^{s}, \beta\right\rangle$ in G_{*}. By these results and by employing the differential D (see (1.6) for the definition) in $\mathscr{A}_{*}\left(M_{p^{r}}\right)$, we can calculate the ring structure of $\mathscr{A}_{*}\left(M_{p^{r}}\right)$ from the results [5] [6] on G_{*}.

