On the Stable Homotopy Ring of Moore Spaces

Shichirô OKA

(Received May 17, 1974)

Introduction

Let p be a prime integer ≥ 5 , q=2(p-1), and $M_t=S^1 \cup_t e^2$ be a Moore space of type $(Z_t, 1)$. Denote by $\mathscr{A}_k(M_t)$ the stable track group $\{S^kM_t, M_t\} =$ Dir lim $\{[S^{n+k}M_t, S^nM_t], S\}$, S being the suspension functor. Then the direct sum $\mathscr{A}_*(M_{p^r}) = \Sigma_k \mathscr{A}_k(M_{p^r})$ is an algebra over Z_{p^r} with the multiplication induced by the composition of maps. The structure of the ring $\mathscr{A}_*(M_{p^r})$ is studied by several authors [4] [6] [13] [14].

N. Yamamoto [14] has calculated the ring structure of $\mathscr{A}_*(M_p)$ for degree $\langle p^2q-4, q=2(p-1)\rangle$, from the results [8] on the stable homotopy ring $G_* = \Sigma_k G_k$, $G_k = \text{Dir} \lim \pi_{n+k}(S^n)$, of spheres. P. Hoffman [4] has introduced a differential in $\mathscr{A}_*(M_t)$ and studied the commutativity of the ring $\mathscr{A}_*(M_t)$ using this differential. H. Toda [13] has generalized Hoffman's results and obtained several useful relations involving the elements $\beta_{(t)} \in \mathscr{A}_{(tp+t-1)q-1}(M_p)$.

The purpose of this paper is to determine the ring structure of $\mathscr{A}_*(M_{p^r})$ for any $r \ge 1$, within the limits of degree less than $(p^2 + 3p + 1)q - 6$.

Let $i (=i_r): S^1 \to M_{p^r}$ and $\pi (=\pi_r): M_{p^r} \to S^2$ denote the natural maps and set $\delta (=\delta_r) = i\pi \in \mathscr{A}_{-1}(M_{p^r})$. We have in Proposition 2.3 a direct sum decomposition for odd t:

$$\mathscr{A}_k(M_t) \approx G_{k+1} \otimes Z_t + G_k \otimes Z_t + G_k * Z_t + G_{k-1} * Z_t.$$

Let $H \approx Z_{p^s}$ be a summand of G_k generated by an element γ . Then H gives summands Z_{p^m} , $Z_{p^m} + Z_{p^m}$ and Z_{p^m} , $m = \min\{r, s\}$, of $\mathscr{A}_{k+1}(M_{p^r})$, $\mathscr{A}_k(M_{p^r})$ and $\mathscr{A}_{k-1}(M_{p^r})$, via the above decomposition. In § 3, we construct elements $[\gamma]$ $(=[\gamma]_r) \in \mathscr{A}_{k+1}(M_{p^r})$ and $\langle \gamma \rangle (=\langle \gamma \rangle_r) \in \mathscr{A}_k(M_{p^r})$ for γ above, and we see in Lemma 3.3 that we can take the elements $[\gamma]$, $[\gamma]\delta$, $\langle \gamma \rangle$ and $\langle \gamma \rangle \delta$ for the generators of four cyclic summands of $\mathscr{A}_*(M_{p^r})$ given by H. Thus the additive structure of $\mathscr{A}_*(M_{p^r})$ is described by using such elements (Theorem 3.5).

In Propositions 3.8-3.9, we discuss the relations of the products $\langle \alpha \rangle [\beta]$ and $[\alpha][\beta]$ in $\mathscr{A}_*(M_{pr})$ with the composition $\alpha\beta$ and the Toda bracket $\langle \alpha, p^s, \beta \rangle$ in G_* . By these results and by employing the differential D (see (1.6) for the definition) in $\mathscr{A}_*(M_{pr})$, we can calculate the ring structure of $\mathscr{A}_*(M_{pr})$ from the results [5][6] on G_* .