Some Remarks on the Global Transforms of Noetherian Rings

Kazunori Fujita and Shiroh ItoH (Received September 20, 1976)

In his paper [4], Matijevic generalized the Krull-Akizuki theorem on the intermediate rings between a noetherian domain of Krull dimension one and its quotient field to the case of general noetherian rings, using the notion of the global transform of a noetherian ring. The aim of this paper is to give some interesting properties of the global transforms of noetherian rings. For a noetherian ring A, the global transform A^g is the set $\{x \in Q(A); x \in A \text{ or } \dim(A/(A:x)) = 0\}$, where Q(A) is the total quotient ring of A. Now A^g coincides with the \mathscr{C} divisorial envelope of A in Q(A), where \mathscr{C} is the Serre subcategory of Mod(A)consisting of all A-modules M such that $Supp(M) \subseteq Max(A)$ (for \mathscr{C} -divisorial envelope, see [2]). On the other hand, a \mathscr{C} -divisorial module M is characterized by $\operatorname{Ext}_{A}^{1}(N, M) = 0$ for every object N in \mathscr{C} . In other words, the relation between A^g and A depends deeply on the set $\{depth(A_m); m \in Max(A)\}$. Among our results in this paper, we shall show that the canonical homomorphism $A \rightarrow A^g$ is a flat epimorphism for any noetherian normal domain A, and also that the global transform of A^g is A^g itself if A is reduced. Finally we give an example which shows that the Corollary to the Theorem in [4] is not true if we drop the assumption of reducedness of A.

Throughout this paper, all rings are commutative with unit. We use the following notations: for a ring A,

Max(A) = the set of all maximal ideals in A,

z(A) = the set of all zero divisor of A,

 $(A:x) = \{a \in A; ax \in A\}$, where x is any element of Q(A).

PROPOSITION 1. Let A be a noetherian ring. Then the following statements hold;

- a) If dim $(A) \le 1$, then $A^g = Q(A)$.
- b) $S^{-1}(A^g) \subseteq (S^{-1}A)^g$ holds for any multiplicatively closed subset S of A.
- c) Suppose that $ht(\mathfrak{p}) \leq 1$ for any associated prime ideal \mathfrak{p} in A. Let S be a multiplicatively closed subset of A such that $\max(S^{-1}A) \subseteq (ai)^{-1}(\max(A))$, where ai is the morphism of $\mathrm{Spec}(S^{-1}A)$ to $\mathrm{Spec}(A)$ defined by the canonical homomorphism i of A to $S^{-1}A$. Then $S^{-1}(A^g) = (S^{-1}A)^g$. In particular, $(A^g)_{\mathfrak{m}} = (A_{\mathfrak{m}})^g$ for any maximal ideal \mathfrak{m} in A.