Fibred Sasakian spaces with vanishing contact Bochner curvature tensor

Byung Hak KIM (Received March 7, 1988)

Introduction

There have been many attempts to clarify geometric meanings of Bochner curvature since S. Bochner [3] introduced it as a Kaehlerian analogue of conformal curvature in 1949. S. Tachibana [12] gave the expression of Bochner curvature tensor in real form, M. Matsumoto and S. Tanno [10] proved that a Kaehlerian space with vanishing Bochner curvature tensor and of constant scalar curvature is a complex space form or a locally product of two complex space forms of constant holomorphic sectional curvature $c \ (\geq 0)$ and -c. Y. Kubo [8], I. Hasegawa and T. Nakane [5] obtained necessary conditions for a Kaehler manifold with vanishing Bochner curvature tensor to be a complex space form.

On the other hand, M. Matsumoto and G. Chūman [9] defined the contact Bochner (briefly, C-Bochner) curvature tensor in a Sasakian space and studied its properties. A Sasakian space form is a space with vanishing C-Bochner curvature tensor.

In this paper, we discuss properties of fibred Sasakian spaces with vanishing C-Bochner curvature tensor and construct an example of Sasakian space with vanishing C-Bochner curvature tensor which is not a Sasakian space form. As to notations and terminologies, we refer to the previous papers [7, 13].

Throughout this paper, the ranges of indices are as follows:

A, B, C, D, E = 1, 2, ..., m,
h, i, j, k,
$$l = 1, 2, ..., m$$
,
a, b, c, d, $e = 1, 2, ..., n$,
 $\alpha, \beta, \gamma, \delta, \varepsilon = n + 1, ..., n + p = m$.

The author expresses his gratitude to his teacher Y. Tashiro for valuable advices, in particular, the construction of the example in §4.

§ 1. Preliminaries

Let $\{\tilde{M}, M, \tilde{g}, \pi\}$ be a fibred Riemannian space, that is, $\{\tilde{M}, \tilde{g}\}$ is an m-dimensional total space with projectable Riemannian metric \tilde{g} , M an