HIROSHIMA MATH. J. **28** (1998), 261–308

Bifurcation theory for semilinear elliptic boundary value problems

Kazuaki TAIRA

(Received February 12, 1997)

ABSTRACT. This expository paper is devoted to static bifurcation theory for a class of *degenerate* boundary value problems for semilinear second-order elliptic differential operators stimulated by a problem of chemical kinetics. Our approach is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in the theory of partial differential equations.

Table of contents

- 0. Introduction and results
- 1. Functional analytic preliminaries
 - 1.1 Theory of positive mappings in ordered Banach spaces
 - 1.2 Local bifurcation theory
- 2. Proof of Theorem 0
 - 2.1 Existence and uniqueness theorem for problem (0.1)
 - 2.2 Selfadjointness of the operator \mathfrak{A}
 - 2.3 Positivity of the resolvent K
 - 2.4 End of Proof of Theorem 0
- 3. Proof of Theorem 1
- 4. Proof of Theorems 2 and 3
 - 4.1 Proof of Theorem 2
 - 4.2 Proof of Theorem 3
- 5. Proof of Theorem 4
- 6. Proof of Theorem 5
- 7. Appendix: The maximum principle References

0. Introduction and results

Let D be a bounded domain of Euclidean space \mathbb{R}^N with smooth boundary ∂D ; its closure $\overline{D} = D \cup \partial D$ is an N-dimensional, compact smooth manifold

¹⁹⁹¹ Mathematics Subject Classification. Primary 35B32, 35J65; Secondary 35P15, 35P30.

Key words and phrases. Bifurcation, simple eigenvalue, super-subsolution method, semilinear elliptic problem.