A new family of filtration seven in the stable homotopy of spheres

Jinkun LIN and Qibing ZHENG

(Received July 22, 1996) (Revised April 11, 1997)

ABSTRACT. This paper proves the existence of a new family of nontrivial homotopy elements in the stable homotopy of spheres which is of degree $2(p-1)(p^n + 3p^2 + 3p + 3) - 7$ and is represented by $b_{n-1}g_0\gamma_3$ in the $E_2^{7,*}$ -term of the Adams spectral sequence, where $p \ge 7$ is a prime and $n \ge 4$. In the course of proof, a new family of homotopy elements in $\pi_* V(1)$ which is represented by $b_{n-1}g_0$ in the $E_2^{4,*}V(1)$ -term of the Adams spectral sequence is detected.

1. Introduction

Let A be the mod p Steenrod algebra and S the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π_*S is one of the central problems in homotopy theory. One of the main tools to reach it is the Adams spectral sequence (ASS) $E_2^{s,t} = \operatorname{Ext}_A^{s,t}(Z_p, Z_p) \Rightarrow \pi_{t-s}S$, where the $E_2^{s,t}$ -term is the cohomology of A. If a family of generators x_i in $E_2^{s,*}$ converges nontrivially in the ASS, then we get a family of homotopy elements f_i in π_*S and we say that f_i is represented by $x_i \in E_2^{s,*}$ and has filtration s in the ASS. So far, not so many families of homotopy elements in π_*S have been detected. For example, a family $\zeta_{n-1} \in \pi_{p^nq+q-3}S$ for $n \ge 2$ which has filtration 3 and is represented by $h_0 b_{n-1} \in \operatorname{Ext}_A^{3,p^nq+q}(Z_p, Z_p)$ has been detected in [2], where q = 2(p-1). The main purpose of this paper is to detect a new family of homotopy elements in π_*S which has filtration 7 in the ASS.

From [3], $\operatorname{Ext}_{A}^{1,*}(Z_p, Z_p)$ has Z_p -base consisting of $a_0 \in \operatorname{Ext}_{A}^{1,1}(Z_p, Z_p)$, $h_i \in \operatorname{Ext}_{A}^{1,p^{iq}}(Z_p, Z_p)$ for all $i \ge 0$ and $\operatorname{Ext}_{A}^{2,*}(Z_p, Z_p)$ has Z_p -base consisting of α_2, a_0^2, a_0h_i $(i > 0), g_i$ $(i \ge 0), k_i$ $(i \ge 0), b_i$ $(i \ge 0)$, and h_ih_j $(j \ge i + 2, i \ge 0)$ whose internal degree are 2q + 1, $2, p^iq + 1, p^{i+1}q + 2p^iq, 2p^{i+1}q + p^iq, p^{i+1}q$ and $p^iq + p^jq$ respectively. From [1] p.110 table 8.1, there is a generator $\gamma_3 \in \operatorname{Ext}_{A}^{3,(3p^2+2p+1)q}(Z_p, Z_p)$ whose name in [1] is $h_{0,1,2,3}$. Our main result is the following theorem.

¹⁹⁹¹ Mathematics Subject Classification. 55Q45. Supported by NSFC.

Key words and phrases. Stable homotopy of Spheres, Adams spectral sequence, Toda-Smith spectra.