Quantum deformations of certain prehomogeneous vector spaces I

Atsushi KAMITA, Yoshiyuki MORITA and Toshiyuki TANISAKI (Received November 13, 1997)

ABSTRACT. We shall construct a quantum analogue of the prehomogeneous vector space associated to a parabolic subgroup with commutative unipotent radical.

0. Introduction

Let g be a simple Lie algebra over the complex number field \mathbb{C} , and let $\mathfrak{p} = \mathfrak{l} \oplus \mathfrak{m}^+$ be a parabolic subalgebra of g, where I is a maximal reductive subalgebra of \mathfrak{p} and \mathfrak{m}^+ is the nilpotent part. We denote by \mathfrak{m}^- the nilpotent subalgebra of g such that $\mathfrak{l} \oplus \mathfrak{m}^-$ is a parabolic subalgebra of g opposite to \mathfrak{p} . Take an algebraic group L with Lie algebra \mathfrak{l} .

In this paper we shall deal with the case where m^{\pm} is nonzero and commutative. Then m^+ consists of finitely many *L*-orbits.

Our aim is to give a quantum analogue of the prehomogeneous vector space (L, \mathfrak{m}^+) . More precisely, we shall construct a quantum analogue A_q of the ring $A = \mathbb{C}[\mathfrak{m}^+]$ of polynomial functions on \mathfrak{m}^+ as a noncommutative $\mathbb{C}(q)$ algebra endowed with the action of the quantized enveloping algebra $U_q(\mathfrak{l})$ of \mathfrak{l} , and show that for each *L*-orbit *C* on \mathfrak{m}^+ there exists a two-sided ideal $J_{C,q}$ of A_q which can be regarded as a quantum analogue of the defining ideal J_C of the closure \overline{C} of *C*. Such an object was intensively studied in the cases $\mathfrak{g} = \mathfrak{sl}_n$ (see Hashimoto-Hayashi [3], Noumi-Yamada-Mimachi [10]) and $\mathfrak{g} = \mathfrak{so}_{2n}$ (see Strickland [13]).

Our method is as follows. Since m^- is identified with the dual space of m^+ via the Killing form, A is isomorphic to the symmetric algebra $S(m^-)$. By the commutativity of m^- the enveloping algebra $U(m^-)$ is naturally identified with the symmetric algebra $S(m^-)$. Hence we have an identification $A = U(m^-)$. Then using the Poincaré-Birkhoff-Witt type basis of the quantized enveloping algebra $U_q(g)$ (Lusztig [9]) we obtain a natural quantization A_q of A as a subalgebra of $U_q(g)$. The algebra A_q has a canonical generator system satisfying quadratic fundamental relations. In particular, it is a graded algebra. The adjoint action of $U_q(g)$ on $U_q(g)$ is defined using the Hopf

¹⁹⁹¹ Mathematics Subject Classification: Primary 17B37; Secondary 17B10, 20G05.

Key words and Phrases: Quantum groups, highest weight modules, semisimple Lie algebras.