S. KIMURA KODAI MATH. SEM. REP 28 (1976), 28-32

ON THE VALUE DISTRIBUTION OF ENTIRE FUNCTIONS OF ORDER LESS THAN ONE

BY SHIGERU KIMURA

§1. Tsuzuki [4] proved the following;

THEOREM A. Let f(z) be an entire function of order less than one and $\{w_n\}_{n=1}^{\infty}$ be a sequence such that $|w_n| \to \infty$ as $n \to \infty$. Suppose that there exists ω such that $0 < \omega < \pi/2$ and all the roots of the equations

$$f(z) = w_n \qquad (n = 1, 2, \cdots)$$

lie in the angle $A(\omega) = \{z; |\arg z - \pi| < \omega\}$. Then f(z) is linear.

The purpose of this note is to extend Theorem A and to prove the following.

THEOREM. Let f(z) be an entire function of order less than one and $\{w_n\}_{n=1}^{\infty}$ be a sequence such that $|w_n| \to \infty$ as $n \to \infty$. Suppose that all the roots of the equations

$$f(z) = w_n \qquad (n = 1, 2, \cdots)$$

lie in the upper half plane $\text{Im } z \ge 0$. Then f(z) is a polynomial of degree not greater than two.

§2. **Proof of Theorem.** Suppose that f(z) satisfies the conditions of Theorem and that f(z) is transcendental. Without loss of generality, we may suppose that $w_1=0$, $f(0)\neq 0$ and we have

$$f(z) = \lambda \prod_{j=1}^{\infty} \left(1 - \frac{z}{z_j} \right)$$

where $\lambda \ (\neq 0)$ is a constant. Choose ω and η such that $0 < \omega < \pi/2$, $\eta = \pi/2 - \omega$. Then we have

$$f(z) = \lambda f_1(z) f_2(z)$$

where

$$f_1(z) = \prod_{j_1=1}^{\infty} \left(1 - \frac{z}{z_{j_2}} \right) \quad (\eta < \arg z_{j_1} < \pi - \eta) ,$$

Received June 3, 1975.