COMPLEX ARITHMETIC THROUGH CORDIC

(Dedicated to Prof. Y. Komatu for his 60th birthday)

By Sin Hitotumatu

Abstract

A unified algorithm for elementary functions due to coordinate transformations, named CORDIC has been first introduced by Volder [1] and later extensively investigated by Walther [2]. Here the author mentions several practical remarks for the application of the algorithm to complex arithmetic including square root.

§ 1. The principle of CORDIC.

In order that the present paper may be self-contained, we first briefly summarize the principle of the algorithm.

1.1. Generalized polar coordinates.

Let (x, y) be the planar orthogonal coordinates for a point P and introduce a generalized polar coordinate system (R, A) by

$$
\left\{\begin{array} { l }
{ R = (x ^ { 2 } + m y ^ { 2 }) ^ { 1 / 2 } } \tag{1}\\
{ A = m ^ { - 1 / 2 } \operatorname { a r c t a n } (m ^ { 1 / 2 } y / x) , }
\end{array} \quad \left\{\begin{array}{l}
x=R \cos \left(m^{1 / 2} A\right) \\
y=R m^{-1 / 2} \sin \left(m^{1 / 2} A\right)
\end{array}\right.\right.
$$

Here m is a fixed constant whose value is one of $1,-1$ or 0 . We should impose some interpretations when $m=0$ and $m=-1$; precisely, we put

$$
A=y / x \quad \text { for } \quad m=0 ; \quad A=\operatorname{arctanh}(y / x) \quad \text { for } \quad m-=1
$$

For simplicity, we always assume $x \geqq 0$, and further $x \geqq|y| \geqq 0$ for $m=-1$. It is easily seen that $A=S / 2 R^{2}$, where S is the area of the domain surrounded by x axis, the radius vector OP and the curve of constant radius R passing through P.

Received June 4, 1973.

