ON $(f, g, u_{(k)}, \alpha_{(k)})$ -STRUCTURES

BY U-HANG KI, JIN SUK PAK AND HYUN BAE SUH

§0. Introduction.

Yano and Okumura [6] have studied hypersurfaces of a manifold with (f, g, u, v, λ) -structure. These submanifolds admit under certain conditions what we call an $(f, g, u_{(k)}, \alpha_{(k)})$ -structure. In particular, a hypersurface of an evendimensional sphere carries an $(f, g, u_{(k)}, \alpha_{(k)})$ -structure (see also Blair, Ludden and Okumura [2]). Submanifolds of codimension 2 in an almost contact metric manifold also admit the same kind of structure (see Yano and Ishihara [5]).

The main purpose of the present paper is to study the $(f, g, u_{(k)}, \alpha_{(k)})$ structure and hypersurfaces of an even-dimensional sphere. In §1, we define and discuss $(f, U_{(k)}, u_{(k)}, \alpha_{(k)})$ -structure and $(f, g, u_{(k)}, \alpha_{(k)})$ -structure. In §2, we recall the definition of (f, g, u, v, λ) -structure and give examples of the manifold with $(f, g, u_{(k)}, \alpha_{(k)})$ -structure. In §3, we study non-invariant hypersurfaces of a manifold with normal (f, g, u, v, λ) -structure. In the last section, we study hypersurfaces of an even-dimensional sphere S^{2n} under certain conditions by using of the following theorem proved by Ishihara and one of the present authors [3]:

THEOREM A. Let (M, g) be a complete and connected hypersurface immersed in a sphere $S^{m+1}(1)$ with induced metric g_{ji} and assume that there is in (M, g)an almost product structure P_i^h of rank p such that $\nabla_j P_i^h = 0$. If the second fundamental tensor H_{ji} of the hypersurface (M, g) has the form $H_{ij} = aP_{ji} + bQ_{ji}$, a and b being non-zero constants, where $P_{ji} = P_j^t g_{ii}$ and $Q_{ji} = g_{ji} - P_{ji}$, and, if $m-1 \ge p \ge 1$, then the hypersurface (M, g) is congruent to the hypersurface $S^p(r_1)$ $\times S^{m-p}(r_2)$ naturally embedded in $S^{m+1}(1)$, where $1/r_1^2 = 1 + a^2$ and $1/r_2^2 = 1 + b^2$.

§ 1. $(f, U_{(k)}, u_{(k)}, \alpha_{(k)}$ -structure.

Let M be an *m*-dimensional differentiable manifold of class C^{∞} . We assume there exist on M a tensor field f type (1,1), vector fields U, V and W, 1-forms u, v and w, functions α , β and γ satisfying the conditions (1.1) \sim (1.7):

(1.1)
$$f^{2}X = -X + u(X)U + v(X)V + w(X)W$$

for any vector field X,

Received June 4, 1973.