ON $\left(f, g, u_{(k)}, \alpha_{(k)}\right)$-STRUCTURES

By U-Hang Ki, Jin Suk Pak and Hyun Bae Suh

§ 0. Introduction.

Yano and Okumura [6] have studied hypersurfaces of a manifold with (f, g, u, v, λ)-structure. These submanifolds admit under certain conditions what we call an ($f, g, u_{(k)}, \alpha_{(k)}$)-structure. In particular, a hypersurface of an evendimensional sphere carries an ($f, g, u_{(k)}, \alpha_{(k)}$)-structure (see also Blair, Ludden and Okumura [2]). Submanifolds of codimension 2 in an almost contact metric manifold also admit the same kind of structure (see Yano and Ishihara [5]).

The main purpose of the present paper is to study the ($f, g, u_{(k)}, \alpha_{(k)}$)structure and hypersurfaces of an even-dimensional sphere. In $\S 1$, we define and discuss $\left(f, U_{(k)}, u_{(k)}, \alpha_{(k)}\right)$-structure and ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure. In $\S 2$, we recall the definition of (f, g, u, v, λ)-structure and give examples of the manifold with ($\left.f, g, u_{(k)}, \alpha_{(k)}\right)$-structure. In $\S 3$, we study non-invariant hypersurfaces of a manifold with normal (f, g, u, v, λ)-structure. In the last section, we study hypersurfaces of an even-dimensional sphere $S^{2 n}$ under certain conditions by using of the following theorem proved by Ishihara and one of the present authors [3]:

Theorem A. Let (M, g) be a complete and connected hypersurface immersed in a sphere $S^{m+1}(1)$ with induced metric $g_{j i}$ and assume that there is in (M, g) an almost product structure $P_{\imath}{ }^{h}$ of rank p such that $\nabla_{j} P_{\imath}{ }^{h}=0$. If the second fundamental tensor $H_{j i}$ of the hypersurface (M, g) has the form $H_{\imath \jmath}=a P_{j i}+b Q_{j i}$, a and b being non-zero constants, where $P_{j i}=P_{j}{ }^{t} g_{i t}$ and $Q_{j i}=g_{j i}-P_{j i}$, and, if $m-1 \geqq p \geqq 1$, then the hypersurface (M, g) is congruent to the hypersurface $S^{p}\left(r_{1}\right)$ $\times S^{m-p}\left(r_{2}\right)$ naturally embedded in $S^{m+1}(1)$, where $1 / r_{1}{ }^{2}=1+a^{2}$ and $1 / r_{2}{ }^{2}=1+b^{2}$.

§ 1. ($f, U_{(k)}, u_{(k)}, \alpha_{(k)}$-structure.

Let M be an m-dimensional differentiable manifold of class C^{∞}. We assume there exist on M a tensor field f type (1,1), vector fields U, V and $W, 1$-forms u, v and w, functions α, β and γ satisfying the conditions (1.1)~(1.7):

$$
\begin{equation*}
f^{2} X=-X+u(X) U+v(X) V+w(X) W \tag{1.1}
\end{equation*}
$$

for any vector field X,
Recerved June 4, 1973.

