CONTINUOUS LINEAR FUNCTIONALS ON THE SPACE OF BOUNDED HARMONIC FUNCTIONS

By Makoto Sakai

Introduction.

Let $X=(X,\| \|)$ be a Banach space, and let T be a continuous linear functional on X. The norm of T is defined by $\|T\|=\sup _{x \in X^{1}}|T(x)|$, where X^{1} is the set of points $x \in X$ such that $\|x\| \leqq 1$. If $y \in X^{1}$ satisfies $T(y)=\|T\|, y$ is called an extremal point (an extremal function if X is a funcion space) of T. The following fundamental assertions are known :
(i) If X is reflexive, then for every continuous linear functional T there exist extremal points of T.
(ii) If X is strictly convex, then for every continuous linear functional T $(\neq 0)$ there exists at most one extremal point of T.
Let $H B(R)$ be the Banach space of all bounded harmonic functions u on a Riemann surface R with the supremum norm :

$$
\|u\|_{R}=\sup _{z \in R}|u(z)|
$$

Then $H B(R)$ is neither reflexive nor strictly convex, in general. Hence there needs the special discussion to obtain the existence and uniqueness theorem of the extremal problems of continuous linear functionals on $H B(R)$.

In this paper we shall deal with the extremal problems of continuous linear functionals on $H B(R)$ and their applications to analytic mappings. In $\S 1$ we give the existence and uniqueness theorem of extremal functions of continuous linear functionals of $H B(R)$. To do this, we use the Wiener compactification of Riemann surfaces and the Riesz representation theorem. The definition of absolutely continuous linear functionals is given in $\S 2$. Linear functionals which appear in function theory are usually absolutely continuous. In $\S 3$ we are concerned with the extensions of continuous linear functionals. As a corollary we see that if $H B(R)$ is of infinite dimension, then $H B(R)$ is not separable. $\S 4$ deals with the so-called harmonic lengths. We give two examples of cycles whose extremal functions of harmonic lengths are not determined uniquely. In the last section, $\S 5$, we discuss applications of the extremal problems to analytic mappings.

Received May 22, 1973.

