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§1. Concurrent vector fields. We make the general assumption that all
the differentiable manifolds and geometric objects which we use are of class
C=. Let M be a differentiable manifold and ¥ a linear connection on M. A
vector field 4 on M is concurrent with respect to V if

V,A=u
for all vectors u tangent to M. ([4])

Example. Let V be a real vector space of dimension n and choose a basis
E,, ---,E, for V. A vector vV can be expressed uniquely as

v=2x*W)E;, 1=1, -, n

and the standard chart (x?, ---, x®) defines a manifold structure on V which is
independent of the particular basis chosen. The vector field 3,x%(0/0x%) also
is independent of the chosen basis and we call it the radial vector field on V.
The conditions

Vﬁ/az‘ (a/axl):O, i, ]=1’ e, n
determine a complete linear connection on V which we call the standard con-

nection on V. The radial vector field is concurrent with respect to the standard
connection.

A riemannian metric g on M determines a unique connection on M called
a riemannian connection. We say that 4 is concurrent with respect to g if it
is concurrent with respect to the corresponding riemannian connection.

Example. Let x',---, x™ be a standard chart on the real vector space V.
If [a,,] is a constant positive definite matrix then the conditions

g(a/axlr a/axj)za“ ’ 7:, ]:11 e, n

determine a riemannian metric £ on V. The corresponding riemannian con-
nection is the standard connection. Consequently the radial vector field is
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