NIINO, K. KÕDAI MATH. SEM. REP. 25 (1973), 385–391

ON THE GROWTH OF ALGEBROID FUNCTIONS OF FINITE LOWER ORDER

By Kiyoshi Niino

Dedicated to Professor Yukinari Tôki on his 60th birthday

1. In 1932 Paley [5] conjectured that an entire function g(z) of order λ satisfies

$$\underbrace{\lim_{r\to\infty}\frac{\log M(r,g)}{T(r,g)}}_{\lambda} \leq \begin{cases} \frac{\pi\lambda}{\sin\pi\lambda} & \left(\lambda \leq \frac{1}{2}\right), \\ \pi\lambda & \left(\lambda > \frac{1}{2}\right). \end{cases}$$

This conjecture was proved by Valiron [7] for $\lambda < 1/2$. The first complete proof was given by Govorov [2]. A little later Petrenko [6] proved this conjecture for meromorphic functions of finite lower order. And D. F. Shea (cf. [1]) gave an improvement of Petrenko's theorem.

The purpose of this paper is to extend Shea's theorem to *n*-valued algebroid functions of finite lower order. Let f(z) be an *n*-valued algebroid function, $f_j(z)$ the *j*-th determination of f(z) and T(r, f) the characteristic function of f(z). We set

$$M(r, a, f) = \max_{|z|=r} \max_{1 \le j \le n} \frac{1}{|f_j(z) - a|}, \quad a \ne \infty,$$

$$M(r, f) = M(r, \infty, f) = \max_{\substack{|z|=r \\ 1 \le j \le n}} \max_{1 \le j \le n} |f_j(z)|$$

and

$$\beta(a, f) = \lim_{r \to \infty} \frac{\log M(r, a, f)}{T(r, f)}.$$

We shall prove the following extension of Shea's theorem:

THEOREM 1. Let f(z) be an n-valued transcendental algebroid function of finite lower order μ and $\Delta(\infty) = \Delta$ the Valiron deficiency of f(z) at ∞ . Then we have

$$\beta(\infty, f) \leq n\pi \mu \{ \Delta(2 - \Delta) \}^{1/2}$$

if $\mu \ge 1/2$ or $\mu < 1/2$ and $\sin(\pi \mu/2) \ge (\Delta/2)^{1/2}$, and

Received October 31, 1972.