ON PRIME ENTIRE FUNCTIONS

By Shigeru Kimura

§1. An entire function $F(z)=f \circ g(z)$ is said to be prime if every factorization of the above form implies that one of the functions $f(z)$ or $g(z)$ is linear.

Ozawa [5] has recently proved the following.
Theorem A. Let $F(z)$ be an entire function of order $\rho, 1 / 2<\rho<1$ and with only negative zeros. Assume that $n(r) \sim \lambda r^{\rho}, \lambda>0$ where $n(r)$ indicates the number of zeros of $F(z)$ in $|z|<r$. Further assume that there are two indices j and k such that a_{j}, a_{k} are zeros of $F(z)$ whose multiplicities p_{j}, p_{k} satisfy $\left(p_{j}, p_{k}\right)=1$. Then $F(z)$ is prime.

The purpose of this note is to extend Theorem A to higher orders and to prove the following.

Theorem. Let $F(z)$ be an entire function of non-integral order $\rho(>1 / 2)$, with only negative zeros. Assume that $n(r) \sim \lambda r^{\circ}, \lambda>0$. Further assume that there are two indices j and k such that a_{j}, a_{k} are zeros of $F(z)$ whose multiplicities p_{j}, p_{k} satisfy $\left(p_{j}, p_{k}\right)=1$. Then $F(z)$ is prime.

In order to prove this we quote several known results.
Lemma 1. (Edrei [1]). Let $f(z)$ be an entire function. Assume that there exists an unbounded sequence $\left\{h_{\nu}\right\}_{v=1}^{\infty}$ such that all the roots of the equations $f(z)=h_{\nu}, \nu=1,2, \cdots$, be real. Then $f(z)$ is a polynomial of degree at most two.

Lemma 2. (Pólya [6]). Suppose that $f(z), g(z)$ are entire functions and that $\phi(z)=f \circ g(z)$ is of finite order. Then either $g(z)$ is a polynomial or $f(z)$ is of order zero.

Lemma 3. (Hardy-Littlewood [2]). If $F(z)$ is a positive integrable function such that, when $t \rightarrow 0$,

$$
\int_{0}^{\infty} F(x) e^{-x t} d x \sim t^{-\beta} \quad(\beta>0),
$$

then, when $x \rightarrow \infty$,

$$
\int_{0}^{x} F(u) d u \sim \frac{x^{\beta}}{\Gamma(\beta+1)} .
$$

Received January 11, 1971.

