KÔDAI MATH. SEM. REP. 24 (1972), 28-33

ON PRIME ENTIRE FUNCTIONS

By Shigeru Kimura

§1. An entire function $F(z)=f \circ g(z)$ is said to be prime if every factorization of the above form implies that one of the functions f(z) or g(z) is linear.

Ozawa [5] has recently proved the following.

THEOREM A. Let F(z) be an entire function of order ρ , $1/2 < \rho < 1$ and with only negative zeros. Assume that $n(r) \sim \lambda r^{\rho}$, $\lambda > 0$ where n(r) indicates the number of zeros of F(z) in |z| < r. Further assume that there are two indices j and k such that a_j , a_k are zeros of F(z) whose multiplicities p_j , p_k satisfy $(p_j, p_k)=1$. Then F(z) is prime.

The purpose of this note is to extend Theorem A to higher orders and to prove the following.

THEOREM. Let F(z) be an entire function of non-integral order ρ (>1/2), with only negative zeros. Assume that $n(r) \sim \lambda r^{e}$, $\lambda > 0$. Further assume that there are two indices j and k such that a_{j} , a_{k} are zeros of F(z) whose multiplicities p_{j} , p_{k} satisfy $(p_{j}, p_{k})=1$. Then F(z) is prime.

In order to prove this we quote several known results.

LEMMA 1. (Edrei [1]). Let f(z) be an entire function. Assume that there exists an unbounded sequence $\{h_{\nu}\}_{\nu=1}^{\infty}$ such that all the roots of the equations $f(z)=h_{\nu}, \nu=1, 2, \cdots$, be real. Then f(z) is a polynomial of degree at most two.

LEMMA 2. (Pólya [6]). Suppose that f(z), g(z) are entire functions and that $\phi(z)=f\circ g(z)$ is of finite order. Then either g(z) is a polynomial or f(z) is of order zero.

LEMMA 3. (Hardy-Littlewood [2]). If F(z) is a positive integrable function such that, when $t \rightarrow 0$,

$$\int_{0}^{\infty}F(x)e^{-xt}dx\sim t^{-eta}$$
 ($eta\!>\!0$),

then, when $x \rightarrow \infty$,

$$\int_0^x F(u) du \sim \frac{x^{\beta}}{\Gamma(\beta+1)}.$$

Received January 11, 1971.