ON THE EIGHTH COEFFICIENT OF UNIVALENT FUNCTIONS, II

By Mitsuru Ozawa and Yoshihisa Kubota

0. Let $f(z)$ be a normalized regular function univalent in the unit circle $|z|<1$

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} .
$$

For the eighth coefficient a_{8} several authors had proved its local maximality at the Koebe function $z /(1-z)^{2}$ [1], [4], [6]. One of the authors had improved the method in [4] to a great extent in [6]. Obrock [5] and Schiffer [8] proved a general result independently, which can be formulated in the present case in the following manner: If a_{2}, a_{3} and a_{4} are real, then $\Re a_{8} \leqq 8$ with equality holding only for $z /(1-z)^{2}$. In [7] we have given the following fact: If a_{2} is real non-negative, then $\Re a_{8} \leqq 8$ with equality holding only for $z /(1-z)^{2}$.

In this paper we shall prove the following theorem:
Theorem. If $a_{3}-3 a_{2}^{2} / 4$ and $a_{4}-3 a_{2} a_{3} / 2+5 a_{2}^{3} / 8$ are real and $\left|\arg a_{2}\right| \leqq \pi / 7$, then $\mathfrak{R} a_{8} \leqq 8$. Equality occurs only for the Koebe function $z /(1-z)^{2}$.

By the well known rotation this theorem implies the result due to Obrock and Schiffer as a simple corollary. Our original motivation in [7] and in this paper lies to investigate the status of the general a_{8} problem. So the theorems are only byproducts of our original intention. We believe at the present time that the status became almost clear.

Section 1 is devoted to several preparatory lemmas and inequalities from which we start. Section 2 to 9 are concerned with the case $1 \leqq \Re a_{2} \leqq 2$. The main part in this paper consists of sections $2,4,6$ and 8 . Section 10 is concerned with the case $0 \leqq \Re a_{2} \leqq 1$. Sections $3,5,7,9$ and 10 are rather trivial parts and easy to handle.

1. We make use of the same notations as in [4]. By our assumption $y^{\prime}=\eta^{\prime}=0$ and $\left|x^{\prime}\right| p \mid \leqq \tan (\pi / 7)$.

First we shall give here several lemmas, which will be used later on.
Lemma 1. $11\left(\tau^{2}+\tau^{\prime 2}\right)+9\left(\varphi^{2}+\varphi^{\prime 2}\right)+7\left(\xi^{2}+\xi^{\prime 2}\right)+5 \eta^{2}+3 y^{2}+x^{\prime 2} \leqq 4 x-x^{2}$.
Proof. This is a simple consequence of the area theorem for $f\left(1 / z^{2}\right)^{-1 / 2}$.

[^0]
[^0]: Received May 21, 1970-

