ON THE INFLUENCE OF A CONFORMAL KILLING TENSOR ON THE REDUCIBILITY OF COMPACT RIEMANNIAN SPACES

By Shizuko Sato

§0. Let M be an *n*-dimensional Riemannian space whose metric tensor is given by g_{ab} .¹⁾ A contravariant vector field v^a is called an infinitesimal conformal transformation or a conformal Killing vector if there exists a scalar function ρ such that

$V_a v_b + V_b v_a = 2\rho g_{ab}$,

where $v_a = g_{ab}v^b$ and V_a means the covariant derivation with respect to the Riemannian connection. Especially, a conformal Killing vector v^a is called an infinitesimal isometry or a Killing vector if $\rho = 0$. In a compact reducible Riemannian space, the following theorem is well known.

THEOREM (Tachibana $[1]^{2}$). In a compact reducible Riemannian space, an infinitesimal conformal transformation is an infinitesimal isometry.

On the other hand, as a generalization of a conformal Killing vector, Kashiwada [3] has defined a conformal Killing tensor, that is, a skew-symmetric tensor $u_{a_1\cdots a_r}$ is called a conformal Killing tensor of degree r if there exists a skew-symmetric tensor $\rho_{a_1\cdots a_{r-1}}$ such that

$$(0.1) \qquad \nabla_{c} u_{a_{1}\cdots a_{r}} + \nabla_{a_{1}} u_{ca_{2}\cdots a_{r}} = 2\rho_{a_{2}\cdots a_{r}} g_{ca_{1}} - \sum_{i=2}^{r} (-1)^{i} (\rho_{a_{1}\cdots \hat{a}_{i}\cdots a_{r}} g_{ca_{i}} + \rho_{ca_{2}\cdots \hat{a}_{i}\cdots a_{r}} g_{a_{1}a_{i}}),$$

where \hat{a}_i means that a_i is omitted. This $\rho_{a_1 \cdots a_{r-1}}$ is called the associated tensor of $u_{a_1 \cdots a_r}$. Especially, $u_{a_1 \cdots a_r}$ is called a Killing tensor if $\rho_{a_1 \cdots a_{r-1}} = 0$.

The purpose of the paper is to discuss the relation between the existence of a conformal Killing tensor and the reducibility of compact Riemannian spaces as a generalization of the above theorem.

The author expresses her hearty thanks to Prof. S. Tachibana for his kind suggestions.

Received April 9, 1970.

¹⁾ Indices a, b, c, \cdots run over $1, \cdots, n$.

²⁾ See the bibliography at the end of the paper.