ON A SYSTEM OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS RELATED TO A TURNING POINT PROBLEM

By Minoru Nakano

§1. Introduction.

 1° In order to analyse the so called turning point problem, sometimes the given equation will be reduced to a simpler type. If the given equation, however, has a "complicated" turning point, it will be investigated in several domains separately, where the original equation behaves in a quite different manner, and each solution obtained in the corresponding domain will be *matched* with the solutions in adjacent domains by adequate methods. Iwano [2] analysed how to divide the domain where the equation is defined and how to reduce the equation in each of the divided domains. For instance, the equation with a turning point at the origin

$$\varepsilon \frac{dy}{dx} = \begin{bmatrix} 0 & 1 \\ x^3 - \varepsilon & 0 \end{bmatrix} y$$

can be changed by a transformation $y = \text{diag}[1, x^{3/2}]u$ to

$$(x^{-3}\varepsilon)x^{3/2}\frac{du}{dx} = \left\{ \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + (x^{-3}\varepsilon) \begin{bmatrix} 0 & 0 \\ -1 & -\frac{3}{2}x^{1/2} \end{bmatrix} \right\} u$$

in a domain $M_1|\varepsilon|^{1/3} \leq |x| \leq \delta_0$; by transformations $x = \varepsilon^{1/3} \xi$, $y = \text{diag}[1, \varepsilon^{1/2}]v$ to

$$\varepsilon^{1/6} \frac{dv}{d\xi} = \begin{bmatrix} 0 & 1\\ \xi^3 - 1 & 0 \end{bmatrix} v$$

in a domain $M_2|\varepsilon|^{1/2} \leq |x| \leq M_1|\varepsilon|^{1/3}$; and by transformations $x = \varepsilon^{1/2}\eta$, $y = \text{diag}[1, \varepsilon^{1/2}]w$ to

$$\frac{dw}{d\eta} = \left\{ \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} + \varepsilon^{1/2} \begin{bmatrix} 0 & 0 \\ \eta^3 & 0 \end{bmatrix} \right\} w$$

in a domain $|x| \leq M_2 |\varepsilon|^{1/2}$. Here δ_0 is a small constant and M_i (i=1,2) are large

Received June 26, 1969.