ON A SYSTEM OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS RELATED TO A TURNING POINT PROBLEM

By Minoru Nakano

§ 1. Introduction.

$\mathbf{1}^{\circ}$ In order to analyse the so called turning point problem, sometimes the given equation will be reduced to a simpler type. If the given equation, however, has a "complicated" turning point, it will be investigated in several domains separately, where the original equation behaves in a quite different manner, and each solution obtained in the corresponding domain will be matched with the solutions in adjacent domains by adequate methods. Iwano [2] analysed how to divide the domain where the equation is defined and how to reduce the equation in each of the divided domains. For instance, the equation with a turning point at the origin

$$
\varepsilon \frac{d y}{d x}=\left[\begin{array}{cc}
0 & 1 \\
x^{3}-\varepsilon & 0
\end{array}\right] y
$$

can be changed by a transformation $y=\operatorname{diag}\left[1, x^{3 / 2}\right] u$ to

$$
\left(x^{-3} \varepsilon\right) x^{3 / 2} \frac{d u}{d x}=\left\{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]+\left(x^{-3} \varepsilon\right)\left[\begin{array}{cc}
0 & 0 \\
-1 & -\frac{3}{2} x^{1 / 2}
\end{array}\right]\right\} u
$$

in a domain $M_{1}|\varepsilon|^{1 / 3} \leqq|x| \leqq \delta_{0}$; by transformations $x=\varepsilon^{1 / 3} \xi, y=\operatorname{diag}\left[1, \varepsilon^{1 / 2}\right] v$ to

$$
\varepsilon^{1 / 6} \frac{d v}{d \xi}=\left[\begin{array}{cc}
0 & 1 \\
\xi^{3}-1 & 0
\end{array}\right] v
$$

in a domain $M_{2}|\varepsilon|^{1 / 2} \leqq|x| \leqq M_{1}|\varepsilon|^{1 / 3}$; and by transformations $x=\varepsilon^{1 / 2} \eta, y=\operatorname{diag}\left[1, \varepsilon^{1 / 2}\right] w$ to

$$
\frac{d w}{d \eta}=\left\{\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]+\varepsilon^{1 / 2}\left[\begin{array}{ll}
0 & 0 \\
\eta^{3} & 0
\end{array}\right]\right\} w
$$

in a domain $|x| \leqq M_{2}|\varepsilon|^{1 / 2}$. Here δ_{0} is a small constant and $M_{i}(i=1,2)$ are large

[^0]
[^0]: Received June 26, 1969.

