SURFACES OF CURVATURE $\lambda_N = 0$ IN E^{2+N}

By BANG-YEN CHEN

1.^{1),2)} In [3], Prof. Ōtsuki introduced some kinds of curvature, $\lambda_1, \lambda_2, \dots, \lambda_N$, for surfaces in a (2+N)-dimensional Euclidean space E^{2+N} . These curvatures play a main rôle for the surfaces in higher dimensional Euclidean space.

In [5], Shiohama proved that a complete, oriented surface M^2 in E^{2+N} with the curvatures $\lambda_1 = \lambda_2 = \cdots = \lambda_N = 0$ is a cylinder.

In this note, we shall prove the following theorem:

THEOREM 1. Let $f: M^2 \rightarrow E^{2+N}$ (N ≥ 2) be an immersion of a compact, oriented surface M^2 in a (2+N)-dimensional Euclidean space E^{2+N} . Then

(I) The last curvature $\lambda_N = 0$ if and only if M^2 is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N} , and

(II) The first curvature $\lambda_1 = a = constant$ and the last curvature $\lambda_N = 0$ if and only if M^2 is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} with radius $1/\sqrt{a}$.

2. Lemmas. In order to prove Theorem 1, we first prove the following two lemmas.

LEMMA 1. Let $f: M^2 \rightarrow E^{2+N}$ be an immersion given as in Theorem 1. Then the last curvature $\lambda_N \ge 0$ if and only if M^2 is imbedded as a convex surface in a 3dimensional linear subspace of E^{2+N} .

Proof. Let $f: M^2 \rightarrow E^{2+N}$ be an immersion given as in Theorem 1, and let $(p, e_1, e_2, \dots, e_{2+N})$ be a Frenet-frame in the sense of Ōtsuki [2], then we have the following:

(2.1) $dp = \omega_1 e_1 + \omega_2 e_2,$

(2.2)
$$de_A = \sum_B \omega_{AB} e_B, \qquad \omega_{AB} + \omega_{BA} = 0,$$

(2.3)
$$\omega_{ir} = \sum_{\sigma} A_{rij} \omega_j, \qquad A_{rij} = A_{rji}$$

(2. 4) $\omega_{ir} \wedge \omega_{2r} = \lambda_{r-2} \omega_1 \wedge \omega_2 \qquad \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N,$

(2.5)
$$G(p) = \sum \lambda_{r-2}(p),$$

 $A, B=1, \dots, 2+N, r=3, \dots, 2+N, i, j=1, 2,$

Received February 10, 1969.

1) We follow the notations in [3].

²⁾ This work was supported in part by the SDF at University of Notre Dame, 1968-1970.