SURFACES OF CURVATURE $\lambda_{N}=0$ IN \boldsymbol{E}^{2+N}

By Bang-Yen Chen

1. ${ }^{11,2)}$ In [3], Prof. Ōtsuki introduced some kinds of curvature, $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{N}$, for surfaces in a $(2+N)$-dimensional Euclidean space E^{2+N}. These curvatures play a main rôle for the surfaces in higher dimensional Euclidean space.

In [5], Shiohama proved that a complete, oriented surface M^{2} in E^{2+N} with the curvatures $\lambda_{1}=\lambda_{2}=\cdots=\lambda_{N}=0$ is a cylinder.

In this note, we shall prove the following theorem:
Theorem 1. Let $f: M^{2} \rightarrow E^{2+N}(N \geqq 2)$ be an immersion of a compact, oriented surface M^{2} in a $(2+N)$-dimensional Euclidean space E^{2+N}. Then
(I) The last curvature $\lambda_{N}=0$ if and only if M^{2} is imbedded as a convex surface in a 3-dimensional linear subspace of E^{2+N}, and
(II) The first curvature $\lambda_{1}=a=$ constant and the last curvature $\lambda_{N}=0$ if and only if M^{2} is imbedded as a sphere in a 3-dimensional linear subspace of E^{2+N} with radius $1 / \sqrt{a}$.
2. Lemmas. In order to prove Theorem 1, we first prove the following two lemmas.

Lemma 1. Let $f: M^{2} \rightarrow E^{2+N}$ be an immersion given as in Theorem 1. Then the last curvature $\lambda_{N} \geqq 0$ if and only if M^{2} is imbedded. as a convex surface in a 3dimensional linear subspace of E^{2+N}.

Proof. Let $f: M^{2} \rightarrow E^{2+N}$ be an immersion given as in Theorem 1, and let $\left(p, e_{1}, e_{2}, \cdots, e_{2+N}\right)$ be a Frenet-frame in the sense of O tsuki [2], then we have the following:

$$
\begin{array}{ll}
d p=\omega_{1} e_{1}+\omega_{2} e_{2}, & \\
d e_{A}=\sum_{B} \omega_{A B} e_{B}, & \omega_{A B}+\omega_{B A}=0, \\
\omega_{i r}=\sum_{r} A_{r i j} \omega_{\jmath}, & A_{r \imath j}=A_{r j i}, \\
\omega_{i r} \wedge \omega_{2 r}=\lambda_{r-2} \omega_{1} \wedge \omega_{2} & \lambda_{1} \geqq \lambda_{2} \geqq \cdots \geqq \lambda_{N}, \\
G(p)=\sum_{r} \lambda_{r-2}(p), & \tag{2.5}\\
A, B=1, \cdots, 2+N, & r=3, \cdots, 2+N, \quad i, j=1,2,
\end{array}
$$

[^0]
[^0]: Received February 10, 1969.

 1) We follow the notations in [3].
 2) This work was supported in part by the SDF at University of Notre Dame, 19681970.
