A NOTE ON PSEUDO-UMBILICAL SUBMANIFOLDS WITH M-INDEX 1 AND CODIMENSION 2 IN EUCLIDEAN SPACES

By Tominosuke Ötsuki

In the proof of the case $k_2 \neq 0$ of Theorem 3 in [2], the author made a mistake by using the Gauss' lemma. In this note he will show that the same results holds. We rewrite the related part of the theorem.

THEOREM. Let M^n $(n \ge 3)$ be an n-dimensional submanifold in (n+2)-dimensional Euclidean space E^{n+2} which is pseudo-umbilical and of M-index 1 and whose second curvature is not zero everywhere. Then M^n is a locus of a moving (n-1)-sphere $S^{n-1}(v)$ depending on a parameter v such that the radius is not constant, the locus of the centor has the tangent direction orthogonal to the tangeht space to M^n at the corresponding point and intersects obliquely the n-dimensional linear subspace containing $S^{n-1}(v)$, and $S^{n-1}(v)$ is umbilical in M^n .

Proof. Using the notations §§ 1, 2 in [2], let $k_1(p)$ and $k_2(p)$ be the first and second curvatures at p of M^n in E^{n+2} . Let $\phi: M^n \to E^{n+2}$ be the mapping defined by

(1)
$$q = \psi(p) = p + \frac{1}{k_1(p)} \bar{e}(p),$$

where $\bar{e}(p)$ is the mean curvature unit vector at p. Making use of the frame (p, e_1, \dots, e_{n+2}) such that

(2)
$$\omega_{in+1} = k_1 \omega_i, \qquad \omega_{n+1,n+2} = k_2 \omega_n,$$

where $k_1 \neq 0$, $k_2 \neq 0$ by the assumption. Differentiating the second of (2) and using them and the structure equation of M^n , we get

$$(3) d\omega_n = -d \log k_2 \wedge \omega_n,$$

which shows that the Pfaff equation

$$(4)$$
 $\omega_n = 0$

is completely integrable. Let Q(v) be the integral hypersurface of (4) depending on a parameter v. Then, we put

(5)
$$\omega_n = f dv$$
,

Received November 4, 1968.