GENERALIZATIONS OF THE CONNECTION OF TZITZEICA

By Kentaro Yano

Dobrescu [1] has recently studied what he calls the connection of Tzitzéica [4] on hypersurfaces in a Euclidean space.

The main purpose of the present paper is to define the connection of Tzitzéica on hypersurfaces in an affinely connected manifold along which a torse-forming [6] or a concurrent vector field [5] is given and to study the properties of the connection of Tzitzéica thus defined.

§ 1. The connection of Tzitzéica on a hypersurface in a centro-affine space.

Let A^n be an *n*-dimensional centro-affine space $(n \ge 3)$, that is, an affine space in which a point O is specified. Then any point P in A^n is represented by the socalled position vector $X = \overrightarrow{OP}$. This means that with every point P of A^n , there is associated a vector X.

We now assume that there is given a hypersurface V^{n-1} in A^n and denote by

$$X = X(u^1, u^2, \cdots, u^{n-1})$$

the parametric representation of V^{n-1} , where (u^a) $(a, b, c, \dots = 1, 2, 3, \dots, n-1)$ are local parameters on V^{n-1} such that vectors

 $X_b = \partial_b X$

tangent to V^{n-1} are linearly independent, ∂_b denoting the differential operators $\partial_b = \partial/\partial u^b$.

We assume that the vector X at P on V^{n-1} is never tangent to V^{n-1} , that is, the vector X is linearly independent of X_b .

We then have, for the vectors $\partial_c X_b$, the equations of the form

(1.1)
$$\partial_c X_b = \Gamma_c^{\ a}{}_b X_a + h_{cb} X_b$$

where $\Gamma_{c}^{a}{}_{b}$, symmetric in c and b, define an affine connection on V^{n-1} called the connection of Tzitéica [1], [4] and h_{cb} , symmetric in c and b, define a tensor field on V^{n-1} called the second fundamental tensor.

The equations (1.1) are so-called equations of Gauss for the V^{n-1} , the pseudo-

Received September 5, 1968.