THE RANDOM NET WHICH HAS BASIC ORGANS REALIZING PARITY BOOLEAN FUNCTIONS

By YASUICHI HORIBE

This paper is a revised and modified version of the foregoing paper [1] in the sense that the ability of pattern discrimination is much more increased than [1].

1. Brief review of the general concept.

We briefly review the fundamental concept of pattern recognition by random net proposed in [1] (See [1] for detail).

I is the set of *n* "input points". Denoting by $\pi(A)$ the number of elements belonging to a finite set A, we have $\pi(I)=n$. Any subset $f \subset I$ will be called *(input) pattern* which may be interpreted as a binary 0, 1 sequence of length *n*. The 2^n possible patterns constitute the *(input)* pattern space F. To say that there are given K categories on F is to say that K probability distributions

$$\mathcal{P}_n = \{P_n^{(1)}, P_n^{(2)}, \cdots, P_n^{(K)}\}$$

are defined on F, considering them to depend on n.

A random net transforms F randomly into another pattern space (output pattern space) G comprising of patterns which are subsets of the set of N output points. Then the random net defines a mapping (assumed deterministic in the present study) $\varphi: F \rightarrow G$. We have thus $\pi(G) \leq 2^n$.

Given a category $k \in C = \{1, 2, \dots, K\}$, denote by $Q_{l_0}^{(k)}$ the probability that the *l*-th output point emits signal 0. If the random net has the property that the N output component signals are mutually *independent*, the probability that the corresponding output pattern $\varphi(f) \in G$ is observed, given category k, is given by

(1)
$$q_{\varphi(f)}^{(k)} \equiv \prod_{l \in \varphi(f)} (1 - Q_{l0}^{(k)}) \prod_{l \notin \varphi(f)} Q_{l0}^{(k)}.$$

If we assume a learning mechanism which can estimate the matrix $\mathcal{M}=(Q_{l_0}^{(k)})$ and the probabilities $p^{(1)}, p^{(2)}, \dots, p^{(K)}$ on the category space C, then the *a posteriori* probability method to recognize patterns may be as follows:

- (A) An unknown input pattern $f \in F$ is given and the $\varphi(f) \in G$ is observed at the output level.
- (B) By (1) $p^{(k)} \cdot q^{(k)}_{\varphi(f)}, k=1, 2, \dots, K$, are calculated.

Received May 9, 1968.