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CONSTRUCTION OF BRANCHING MARKOV PROCESSES
WITH AGE AND SIGN*

By Masao NaGcasawA

It is a familiar fact in the theory of Markov processes that solutions for a
wide class of /linear parabeolic and elliptic equations can be investigated in terms
of Markov processes (e.g. Dynkin [3] and Ito-McKean [8]). On the other hand it
was known that a class of semi-linear parabolic equations plays an important role
in the theory of branching processes (e.g. Bartlett [2], Harris [5], Moyal [15], and
Skorohod [21]). The mathematical structure that reveals the mechanism of how
this non-linearity appears in the theory of Markov processes should, therefore, be
investigated systematically. Attempts in this direction were recently performed in
several articles, especially, in Moyal [13], [14], [15], Skorohod [21], and Ikeda-
Nagasawa-Watanabe [6], [7]. A branching Markov process X; is defined as a
strong Markov process on a large state space §= Us=o S"U{4} having the following
branching property®

. PN X
(1) Tif @=(T:f)|sx), x€8,

where T,Ais the semi-group of the “large” Markov process on S and f is a func-
tion on S defined by

1 , if xeS?°,
f@={ [17@, i w=Gas-a0eS"
0 , if x=4,
where f is a measurable function on S with ||f||=supzes |f(x)]=1. Then
w(t,x)=Tif (), x€S,

is the (minimal)® solution of a non-linear integral equation:

(2) u(t, )=Tf (@) +S:K<x, dsdy)Fly, ut—s, )],  weS,
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1) Definition of the notation appearing 1n the following will be found mn §1.

2) This 1s taken to mean that if f=0, =z, x):T;f‘(x) is the minimal solution of (2).
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