ON THE ABSOLUTE NÖRLUND SUMMABILITY OF A FOURIER SERIES AND ITS CONJUGATE SERIES

By H. P. Dikshit

1. Definitions and notations. Let $\sum a_n$ be a given infinite series with the sequence of partial sums $\{s_n\}$. Let $\{p_n\}$ be a sequence of constants, real or complex, and let us write $P_n = p_0 + p_1 + \dots + p_n$, $P_{-1} = p_{-1} = 0$. The sequence-to-sequence transformation:

(1.1)
$$t_n = \sum_{\nu=0}^n p_{n-\nu} s_{\nu} / P_n, \qquad (P_n \neq 0)$$

defines the sequence $\{t_n\}$ of Nörlund means¹) of $\{s_n\}$, generated by the sequence of coefficients $\{p_n\}$. If $\{t_n\}\in BV$, i.e., $\sum_n |t_n-t_{n-1}|<\infty$, ²) we say that $\sum a_n$ or $\{s_n\}$ is summable $|N, p_n|$. ³)

In the special case in which $p_n = \binom{n+\alpha-1}{\alpha-1}$, $\alpha > -1$, the (N, p_n) mean reduces to familiar (C, α) mean.

Let f(t) be a periodic function with period 2π and integrable in the Lebesgue sense over $(-\pi, \pi)$ and let the Fourier series of f(t) be

(1.2)
$$\sum_{n=1}^{\infty} (a_n \cos nt + b_n \sin nt) = \sum_{n=1}^{\infty} A_n(t).$$

Then the conjugate series of (1, 2) is

(1.3)
$$\sum_{n=1}^{\infty} (b_n \cos nt - a_n \sin nt) = \sum_{n=1}^{\infty} B_n(t).$$

We write throughout:

$$\varphi(t) = \frac{1}{2} \{ f(x+t) + f(x-t) \}, \qquad \psi(t) = \frac{1}{2} \{ f(x+t) - f(x-t) \};$$

$$R_n = (n+1)p_n/P_n; \qquad S_n = \sum_{\nu=0}^n (\nu+1)^{-1} P_\nu/P_n;$$

$$P_n^* = \sum_{\nu=0}^n |p_\nu|; \qquad S_n^* = \sum_{\nu=0}^n (\nu+1)^{-1} |P_\nu|/|P_n|;$$

Received April 1, 1968.

1) Nörlund [6]. See also Woronoi [14].

2) Similarly by ' $F(x) \in BV(a, b)$ ', we mean that F(x) is a function of bounded variation in the interval (a, b) and ' $\{\mu_n\} \in B$ ' means that $\{\mu_n\}$ is a bounded sequence.

3) Mears [5].