ON LOCAL MAXIMALITY FOR THE COEFFICIENTS a_{6} and a_{8}

By Mitsuru Ozawa

1. In our previous papers [1], [2], [3] we proved the local maximality of $\mathfrak{R} a_{6}$ and $\Re a_{8}$ at the Koebe function $z /(1-z)^{2}$. In this note we shall prove the local maximality of $\left|a_{6}\right|$ and $\left|a_{8}\right|$ at the Koebe function $z /\left(1-e_{\theta}^{2} z\right)^{2}$, that is, the following theorems.

Theorem 1. Let $f(z)$ be a normalized regular function univalent in the unit circle

$$
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} .
$$

Then there is a positive constant ε such that $\left|a_{6}\right| \leqq 6$ holds for $0 \leqq 2-\left|a_{2}\right| \leqq \varepsilon$. Equality occurs only for the Koebe function $z /\left(1-e^{i \theta} z\right)^{2}$.

Theorem 2. $\left|a_{8}\right| \leqq 8$ holds for $0 \leqq 2-\left|a_{2}\right| \leqq \varepsilon$. Equality occurs only for the Koebe function $z /\left(1-e^{i \theta} z\right)^{2}$.

In the sequel we shall use the same notations as in [1], [2], [3]. Further we put $p=2-x, x^{\prime}=k p$.
2. Proof of theorem 1. By the well-known rotation it is sufficient to prove that (A)

$$
\Re a_{6}<6
$$

for $0 \leqq 2-\left|a_{2}\right| \leqq \varepsilon$, $\left|\arg a_{2}\right| \leqq \pi / 4$, unless $a_{2}=2$. Then we can use our earlier result in [1], [3]:

$$
\Re a_{6} \leqq 6-A\left(2-\Re a_{2}\right), \quad A>0
$$

holds for $0 \leqq 2-\Re a_{2} \leqq \varepsilon_{1}$. Here equality occurs only for the Koebe function $z /(1-z)^{2}$.
Hence there are positive constants ε_{2} and δ^{\prime} such that $\Re a_{6}<6$ for $0 \leqq 2-\left|a_{2}\right| \leqq \varepsilon_{2}$, $\left|\arg a_{2}\right| \leqq \delta^{\prime}$, unless $a_{2}=2$. Hence we may assume that $0<\tan \delta^{\prime}=\delta \leqq|k| \leqq 1$.

By Grunsky's inequality $\left|b_{55}\right| \leqq 1$ we have

$$
\left|a_{6}-2 a_{2} a_{5}-3 a_{3} a_{4}+4 a_{4} a_{2}{ }^{2}+\frac{21}{4} a_{2} a_{3}{ }^{2}-\frac{59}{8} a_{3} a_{2}{ }^{3}+\frac{689}{320} a_{2}{ }^{5}\right| \leqq \frac{2}{5} .
$$

By taking the real part we have

$$
\Re a_{6} \leqq \frac{2}{5}+\Re\left\{2\left(p+i x^{\prime}\right)\left(\xi+i \xi^{\prime}\right)+3\left(y+i y^{\prime}\right)\left(\eta+i \eta^{\prime}\right)+\frac{5}{4}\left(p+i x^{\prime}\right)^{2}\left(\eta+i \eta^{\prime}\right)\right.
$$

[^0]
[^0]: Received March 7, 1968.

