ON THE SOLUTION OF THE FUNCTIONAL
 EQUATION $f \circ g(z)=\boldsymbol{F}(z), \mathrm{V}$

By Mitsuru Ozawa

In our previous paper we discussed the transcendental unsolvability of the functional equation $f \circ g(z)=F(z)$. In this note we shall extend some results in [4] to a more general class of functions and make use of the same terminology "transcendental solvability ". Our basic tool is an elegant theorem of Edrei-Fuchs [2].

Theorem 1. Let $f(z)$ be an entire function of the form $P(z) e^{M(z)}$ with a polynomial $P(z)$. Assume that there exist two constants a, b such that $|a| \neq|b|, a b \neq 0$ and that $f(z)=a$ and $f(z)=b$ have their solutions on p straight lines l_{1}, \cdots, l_{p}, almost all, any two of which are not parallel with each other. Then $f(z)$ reduces to a polynomial.

Proof. By Edrei-Fuchs' theorem in [2] $f(z)$ must be of finite order and hence $M(z)$ must be a polynomial. Denote it by

$$
\alpha_{n} z^{n}+\alpha_{n-1} z^{n-1}+\cdots+\alpha_{1} z+\alpha_{0}, \quad \alpha_{n} \neq 0
$$

By a suitable change of variable we have

$$
M(z)=z^{n}+\alpha_{n-2} z^{n-2}+\cdots+\alpha_{1} z+\alpha_{0}
$$

with new α_{j}. Hence our problem reduces to solve the following equation

$$
\left(A_{m} z^{m}+\cdots+A_{0}\right) \exp \left(z^{n}+\alpha_{n-2} z^{n-2}+\cdots+\alpha_{0}\right)=a
$$

We have asymptotically

$$
z^{n}\left(1+O\left(\frac{1}{z^{2}}\right)\right)=\log \frac{a}{A_{m} e^{\alpha_{0}}}+2 q \pi i
$$

Hence the given p straight lines l_{1}, \cdots, l_{p} must be parallel to one of

$$
\arg z= \pm \frac{\pi}{2 n}+\frac{2 s}{n} \pi, \quad s=0, \cdots, n-1
$$

respectively. Assume that l_{1} is parallel to a radius given by

$$
R e^{\pi i / 2 n}
$$

Then l_{1} can be represented as $x_{0}+R \exp (i \pi / 2 n)$ with a real x_{0}. Let
Received November 20, 1967.

