CORRECTION TO THE PAPER

" APPLICATION OF THE THEORY OF MARKOV PROCESSES TO COMMINUTION I. THE CASE OF DISCRETE TIME PARAMETER"

Vol. 19 (1967), No. 2, pp. 174-188

By Motoo Hori and Minoru Uchida

The statement and proof of Lemma 2 on page 183 is incorrect. It should be replaced by the following

Lemma 2^{\prime}. Let $\left\{\zeta_{n}\right\}$ be a sequence of nonnegative random variables and $\left\{w_{n}\right\}$ a sequence of positive numbers, and suppose that

$$
\frac{\zeta_{n}}{w_{n}} \rightarrow 1 \quad \text { in probability }
$$

as $n \rightarrow \infty$. It is further assumed that for an integer $k \geqq 1$ the k-th moment $E\left\{\zeta_{n}{ }^{k}\right\}$ exists and

$$
\lim _{n \rightarrow \infty} E\left\{\left(\frac{\zeta_{n}}{w_{n}}-1\right)^{k}\right\}=0
$$

Then for all l with $0<l \leqq k$

$$
\lim _{n \rightarrow \infty} \frac{E\left\{\zeta_{n}^{l}\right\}}{w_{n}^{l}}=1 .
$$

Proof. We begin by showing that under the conditions of this lemma

$$
\lim _{n \rightarrow \infty} E\left\{\left|\frac{\zeta_{n}}{w_{n}}-1\right|^{k}\right\}=0
$$

holds. Now put $u_{n}=\left(\zeta_{n} / w_{n}-1\right)^{k} \geqq-1$ and $\left|u_{n}\right|=u_{n}^{+}+u u_{n}^{-}=u_{n}+2 u_{n}^{-}$, where u_{n}^{+}and u_{n}^{-} are the positive and negative parts of u_{n}, respectively. Then we have $0 \leqq u_{n}^{-} \leqq 1$, so that (5.19') implies $E\left\{u_{n}^{-}\right\} \rightarrow 0$. Hence $E\left\{\left|u_{n}\right|\right\}=E\left\{u_{n}\right\}+2 E\left\{u_{n}^{-}\right\} \rightarrow 0$, as was to be proved.

It is easy to derive (5.21^{\prime}) from (5.19^{\prime}) and (5.22^{\prime}). By Minkowski's inequality,

$$
\left[E\left\{\left(\frac{\zeta_{n}}{w_{n}}\right)^{l}\right\}\right]^{1 / l} \leqq\left[E\left\{\left(\frac{\zeta_{n}}{w_{n}}\right)^{k}\right\}\right]^{1 / k} \leqq 1+\left[E\left\{\left|\frac{\zeta_{n}}{w_{n}}-1\right|^{k}\right\}\right]^{1 / k},
$$

Received September 14, 1967.

