KÖDAI MATH. SEM. RFP. 19 (1967), 61-74

ASYMPTOTICALLY MOST INFORMATIVE PROCEDURE IN THE CASE OF EXPONENTIAL FAMILIES

By Kazutomo Kawamura

§1. Introduction.

Recently we showed the following fact in our paper [2]. We considered in [2] two binomial trials E_1 , E_2 having unknown means p_1 , p_2 respectively. And we have introduced the notion of costs such that we must pay costs c_1, c_2 to the observation of a result given by the trials E_1 , E_2 respectively. In each step we are admitted to select one of the two trials E_1 , E_2 . Be continued the selections by some way we denoted the sequence of trials till *n*-th step as $E^{(1)}, \dots, E^{(n)}$ and the sequence of costs till *n*-th step as $C^{(1)}, \dots, C^{(n)}$. Of course we may select at *i*-th step $E^{(i)}$ from the two trials E_1, E_2 depending previous i-1 data X_1, \dots, X_{i-1} given by $E^{(1)}, \dots, E^{(i-1)}$. A procedure \mathfrak{L} was given in [2] such that the sum of information given by two dimensional likelihood ratio relative to the sum of costs till *n*-th step to discriminate $p_1 > p_2$ or $p_1 < p_2$ is asymptotically maximized. In [2] we assumed the unknown true two dimensional parameter (p_1, p_2) did not exist on the boundary $p_1 = p_2$. In our another paper [3] we considered analogous model having two kinds of trials E_1 , E_2 which are obeyed normal distributions with unknown means m_1 , m_2 and known same variance σ^2 and costs c_1, c_2 respectively. Then analogous procedure **T** is asymptotically optimal in the same sense described above. In [3] we noted that our procedure \mathfrak{P} reduced to a policy which does not depending on previous ndata X_1, \dots, X_n but only on sample sizes n_1 of E_1, n_2 of E_2 till *n*-th step. We have omitted the proof of the problem in [3] because we can easily get analogous proof.

In this paper we generalize these problems to k trials E_1, \dots, E_k having exponential distributions with one dimensional unknown parameter $\theta_1, \dots, \theta_k$ respectively. That is, an observation X of E_j has a probability density function of exponential type in Kullback's sense [4] with one dimensional unknown parameter $\theta_j(j=1,\dots,k)$ respectively. And we introduced the boundary $\pi: \mu \cdot \theta = p(\theta = (\theta_1,\dots,\theta_k))$ as a hyperplane in k dimensional euclidean space where $\mu = (\mu_1,\dots,\mu_k)$ is any fixed k dimensional unit vector having all non-zero components and p is any fixed nonnegative number and $\mu \cdot \theta$ is the inner product of two vectors μ and θ . Moreover we use the *notion of costs* introduced by Kunisawa [6], as we used the notion in [2], [3], then we can get some information of θ_j by paying of cost $c_j(j=1,\dots,k)$ respectively. Then we shall show analogously that under the generalized procedure \mathfrak{P}^* given in the following Section 3 the sum of information relative to the sum of costs payed till *n*-th step to discriminate $\mu \cdot \theta$ larger than p or not is asymptotically

Received June 30, 1966.