ASYMPTOTICALLY MOST INFORMATIVE PROCEDURE IN THE CASE OF EXPONENTIAL FAMILIES

By Kazutomo Kawamura

§ 1. Introduction.

Recently we showed the following fact in our paper [2]. We considered in [2] two binomial trials E_{1}, E_{2} having unknown means p_{1}, p_{2} respectively. And we have introduced the notion of costs such that we must pay $\operatorname{costs} c_{1}, c_{2}$ to the observation of a result given by the trials E_{1}, E_{2} respectively. In each step we are admitted to select one of the two trials E_{1}, E_{2}. Be continued the selections by some way we denoted the sequence of trials till n-th step as $E^{(1)}, \cdots, E^{(n)}$ and the sequence of costs till n-th step as $C^{(1)}, \cdots, C^{(n)}$. Of course we may select at i-th step $E^{(i)}$ from the two trials E_{1}, E_{2} depending previous $i-1$ data $X_{1}, \cdots, X_{\imath-1}$ given by $E^{(1)}, \cdots, E^{(i-1)}$. A procedure \mathscr{L} was given in [2] such that the sum of information given by two dimensional likelihood ratio relative to the sum of costs till n-th step to discriminate $p_{1}>p_{2}$ or $p_{1}<p_{2}$ is asymptotically maximized. In [2] we assumed the unknown true two dimensional parameter (p_{1}, p_{2}) did not exist on the boundary $p_{1}=p_{2}$. In our another paper [3] we considered analogous model having two kinds of trials E_{1}, E_{2} which are obeyed normal distributions with unknown means m_{1}, m_{2} and known same variance σ^{2} and $\operatorname{costs} c_{1}, c_{2}$ respectively. Then analogous procedure \mathscr{L} is asymptotically optimal in the same sense described above. In [3] we noted that our procedure \mathscr{L} reduced to a policy which does not depending on previous n data X_{1}, \cdots, X_{n} but only on sample sizes n_{1} of E_{1}, n_{2} of E_{2} till n-th step. We have omitted the proof of the problem in [3] because we can easily get analogous proof.

In this paper we generalize these problems to k trials E_{1}, \cdots, E_{k} having exponential distributions with one dimensional unknown parameter $\theta_{1}, \cdots, \theta_{k}$ respectively. That is, an observation X of E_{\jmath} has a probability density function of exponential type in Kullback's sense [4] with one dimensional unknown parameter $\theta_{j}(j=1, \cdots, k)$ respectively. And we introduced the boundary $\pi: \mu \cdot \theta=p\left(\theta=\left(\theta_{1}, \cdots, \theta_{k}\right)\right)$ as a hyperplane in k dimensional euclidean space where $\mu=\left(\mu_{1}, \cdots, \mu_{k}\right)$ is any fixed k dimensional unit vector having all non-zero components and p is any fixed nonnegative number and $\mu \cdot \theta$ is the inner product of two vectors μ and θ. Moreover we use the notion of costs introduced by Kunisawa [6], as we used the notion in [2], [3], then we can get some information of θ_{j} by paying of cost $c_{j}(j=1, \cdots, k)$ respectively. Then we shall show analogously that under the generalized procedure \mathscr{L}^{*} given in the following Section 3 the sum of information relative to the sum of costs payed till n-th step to discriminate $\mu \cdot \theta$ larger than p or not is asymptotically

[^0]
[^0]: Received June 30, 1966.

