THE CARTAN-BRAUER-HUA THEOREM FOR ALGEBRAS

By Motoichi Okuzumi

The Cartan-Brauer-Hua theorem is saying: If H is a skew field contained in the skew field K, and if every inner automorphism of K maps H into itself, then H is either K, or H belongs to the center of K.

This theorem has been generalized in various forms by Amitsur [1], Faith [3], Kasch [6] and others. In the present note we shall give a generalization of the theorem for algebras as follows. In the following, we assume that Z is a field containing an infinite number of elements.

THEOREM 1. Let A be an algebra over Z with a unit element and of finite rank, and let H be a skew field contained in A possessing an infinite number of elements in Z. If every inner antomorphism of A maps H into itself, then H is either A, or H belongs to the center of A.

We first prove the following lemma:

LEMMA 1. Let A be an algebra over Z with a unit element and of finite rank, and let b be an arbitrary element in A. Then, in the set of elements $\{b+c_1, b+c_2, \dots\}$ where c_i 's are elements of Z, there exist an infinite number of regular elements.

Proof. In a regular representation of Λ in Z, these elements $b+c_1$, $b+c_2$, ... are represented as follows:

$$(b+c_i) [u_1, u_2, \cdots u_n] = [u_1, u_2, \cdots u_n] (B+c_i E)$$

where b corresponds to B, and $u_1, u_2, \dots u_n$ are a basis of A over Z. If $B+c_iE$ is nonsingular, then $b+c_i$ is a regular element. Since the number of roots of the equation |B+xE|=0 in Z is at most [A: Z]=n, there exist an infinite number of regular elements in them.

Proof of Theorem 1. If H is neither A, nor H belongs to the center of A, then there exists an element d in H not in the center of A. As additive groups, we obtain the next relations of indices:

$$[A^+: H^+] = \infty, \qquad [A^+: V(d)^+] = \infty,$$

where V(d) is the commutator of d in A. Then, by Lemma 5 in Okuzumi [8], there exists an element b in A not in $H \sim V(d)$. So, by Lemma 1, we have two regular elements $b+c_1$, $b+c_2$ such that

$$(b+c_1)d=h_1(b+c_1), (b+c_2)d=h_2(b+c_2),$$

Received December 16, 1965.