ON THE EXISTENCE OF ANALYTIC MAPPINGS

By Hideo Mutō

 $\S 1$. Let R and S be two Riemann surfaces. When are there any analytic mappings from R into S? This would be one of the most important problems. However it is very difficult to establish a perfect condition for the existence of analytic mappings between two arbitrary Riemann surfaces.

Let R and S be two ultrahyperelliptic surfaces defined by two equations $y^2 = G(z)$ and $u^2 = g(w)$, respectively, where G and g are two entire functions having no zero other than an infinite number of simple zeros. Then Ozawa [1], [2], [3], [4] obtained a perfect condition for the existence of analytic mappings from R into S and several other interesting results.

In the first place ($\S 2 \sim \S 5$) we shall discuss the Riemann surfaces defined in the following manner: Let R_3 and S_3 be two regularly branched three-sheeted covering Riemann surfaces defined by two equations $y^3 = G_2(z)$ and $u^3 = g_2(w)$, respectively, where G_2 and g_2 are two entire functions having no zero other than an infinite number of simple or double zeros.

Next ($\S6 \sim \S7$) we shall discuss on the existence of analytic mappings between ultrahyperelliptic surface and our Riemann surface. Then we can conclude that there is no analytic mapping.

Finally ($\$8 \sim \10) we shall treat the case where S is a closed and regularly branched three-sheeted (or two-sheeted) covering Riemann surface.

The author wishes to express his heartiest thanks to Professor M. Ozawa for his valuable advices and encouragements in preparing the paper.

§ 2. Let \mathfrak{p}_{R_3} and \mathfrak{p}_{S_3} be the projection maps $(z, y) \rightarrow z$, $(w, u) \rightarrow w$, respectively. Let φ be an analytic mapping from R_3 into S_3 .

DEFINITION. If φ satisfies $\mathfrak{p}_{S_3} \circ \varphi(p_1) = \mathfrak{p}_{S_3} \circ \varphi(p_2) = \mathfrak{p}_{S_3} \circ \varphi(p_3)$ for every distinct p_i (i=1,2,3) with $\mathfrak{p}_{R_3}(p_1) = \mathfrak{p}_{R_3}(p_2) = \mathfrak{p}_{R_3}(p_3)$, then we say that φ satisfies the *rigidity* of projection map or φ is a *rigid* analytic mapping from R_3 into S_3 . Similar definition for the rigidity of projection map may be given for an arbitrary analytic function on R_3 (or S_3). If the condition is not satisfied, then we say that φ is a non-rigid analytic mapping or function.

Here we shall prove the following theorem:

Theorem 1. There is no non-rigid analytic mapping from R_3 into S_3 .

In order to prove this theorem we need the following lemma on algebroid functions.

Received July 12, 1965.