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1. Let G(z) and g(z) be two entire functions having no zero other than an
infinite number of simple zeros, respectively. Let R and S be two ultrahyperelliptic
surfaces defined by two equations y2=G(x) and y2 = g(x), respectively. In our pre-
vious paper [3] we offered a conjectural problem: Is the order po of G an integral
multiple of the order pg of g, when there is an analytic mapping ψ from R into S?
As we remarked there, in this problem we should assume that pG<°° and 0</?g<oo
and further suitable normalizations on G and g are done. Let Gc and gc be two
canonical products having the same zeros with the same multiplicities as those of
G and g, respectively. In this paper an analytic mapping means a non-trivial one.

THEOREM 1. Assume that pGc<oo and 0<p9c<oo and that there exists an ana-
lytic mapping φ from R into S. Then pσc is an integral multiple of pqc.

This is somewhat effective criterion for the non-existence of an analytic map-
ping from R into S. Theorem 1 can be stated in the following form:

Assume that ^cr,o,(?)<°° and O<.pNCr;o,g^<.°° and that there exists an analytic
mapping φ from R into S. Then the former one is an integral multiple of the latter
one.

2. To prove theorem 1 we need an elegant theorem due to Valiron [7], We
can state his result in the following manner.

Let h(z) be an entire function satisfying one of the following conditions:
( a ) h(z) has a finite order\
(b) There is a suitable number λ>\ satisfying

log- V(rλ)
lim ° ':; ; =0, F(r)=logM(r), M(r) = max \h(z)\.
r-»oo V{r) | 2 | < ς r

Then the equation h(z)=w has at least one solution z in the annulus

for an arbitrary small positive number a, if \w\ is sufficiently large, \w\>A(a).

As Valiron remarked, (b) implies (a) and (b) is satisfied by a quite wide class of
entire functions, which contains some entire functions of infinite order. He also
gave another theorem which is more precise and applicable than the above.
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