RELATIONS BETWEEN DOMAINS OF HOLOMORPHY AND MULTIPLE COUSIN'S PROBLEMS

By Joji Kajiwara

Introduction.

Oka [12] proved that a domain D of holomorphy in C^n is a *Cousin-I domain*, that is, any additive Cousin's distribution in D has a solution. On the other hand from Cartan [5]-Behnke-Stein [2]'s theorem, a Cousin-I domain in C^2 is a domain of holomorphy. In this way any domain of holomorphy in C^2 can be completely characterized by additive Cousin's problems. For $n \ge 3$, however, Cartan [6] showed that a Cousin-I domain in C^n is not necessarily a domain of holomorphy. In the previous paper [10] we tried to characterize a domain of holomorphy in a Stein manifold by additive Cousin's problems. An open set G in C^n is called *regular* if $G \cap P$ is a Cousin-I open set for any relatively compact polycylinder P in C^n . We proved that a domain in C^n is a domain of holomorphy if and only if it can be exhausted by regular domains. Moreover, we proved that a regular open set is pseudoconvex in the Cartan's sense at its continuous boundary point. Making use of the results of Oka [13] or Docquier-Grauert [7] respectively, we proved that a domain in C^n or more generally in a Stein manifold with a smooth boundary is a domain of holomorphy if and only if it is locally regular at its each boundary point.

Concerning multiple Cousin's problems the situation is more or less different. Thullen [16] gave an example of a domain in C^2 which is not a domain of holomorphy but a *Cousin*-II *domain*, that is, a domain in which any multiple Cousin's distribution has a solution. Let \mathbb{O} and \mathbb{O}^* be, respectively, the sheaves of all germs of holomorphic mappings in *C* and GL(1, C). As we remarked in [9], Thullen's example is a Cousin-II domain *D* with $H^1(D, \mathbb{O}^*) \neq 0$. In the previous paper [11] we proved that a domain (D, φ) over C^n with $H^1(D, \mathbb{O}^*) = H^1(\varphi^{-1}(H), \mathbb{O}^*) = 0$ for any analytic plane *H* in C^n is a domain of holomorphy. Especially a domain (D, φ) over C^2 satisfies $H^1(D, \mathbb{O}^*) = 0$ if and only if (D, φ) is a domain of holomorphy with $H^2(D, Z) = 0$ where *Z* is the abelian group of all integers. These facts suggest that we should obtain a sufficient condition that a domain *D* in C^n is a domain of holomorphy, if we put a similar discussion forward as in [10] substituting a domain *G* with $H^1(G, \mathbb{O}^*) = 0$ in stead of a Cousin-I domain.

As a polycylinder P does not necessarily satisfy $H^1(P, \mathfrak{O}^*)=0$, we shall consider only simply connected polycylinders in the definition below. An open set G in C^n is called *regular*^{*} if $H^1(G \cap P, \mathfrak{O}^*)=0$ for any relatively compact and simply connected polycylinder P in C^n . In the present paper we shall prove that a domain

Received March 16, 1965.