A REMARK ON THE SPACE OF CLOSED RIEMANN SURFACES WITH ORDINARY WEIERSTRASS POINTS

By Yasushi Miyahara

It is known that the space of hyperelliptic Riemann surfaces of genus $g(\geq 2)$ forms a (2g-1)-dimensional complex-analytic submanifold of the Teichmüller space T_g (cf. [2], [9]). In the paper [10], Rauch generalized this result as follows: the space of closed Riemann surfaces of genus $g(\geq 2)$ having Weierstrass points where the first non-gap values is $n(\leq g)$ forms an (n+2g-3)-dimensional complex-analytic submanifold of T_g . For the proof he used the Garabedian deformation.

We want to discuss the same problem by making use of deformations by Beltrami differentials introduced by Bers [6] (see also [3]). We have succeeded for the case n=g.

We remark that a related problem has been discussed by Bers [7] by using quasi-Fuchsian groups.

1. We begin with the statement of our result. In the present paper we consider only closed Riemann surfaces of a given genus $g(\geq 2)$. Let S_0 be such a surface fixed once for all. We denote by σ a homotopy class of sense-preserving homeomorphisms of S_0 onto another S, and call the pair (S, σ) a marked Riemann surface. Two marked Riemann surfaces (S, σ) and (S', σ') are said to be conformally equivalent if the homotopy class $\sigma'\sigma^{-1}$ contains a conformal mapping of S onto S'. We denote by $\langle S, \sigma \rangle$ the conformal equivalence class of (S, σ) , and call the set of all $\langle S_2, \sigma_2 \rangle$, there exists only one quasiconformal mapping f of S_1 onto S_2 which minimizes the maximal dilatation in the homotopy class $\sigma_2\sigma_1^{-1}$ (cf. [1], [5], [11]). We define the distance between two elements by

$$d(,) = \log K(f),$$

where K(f) is the maximal dilatation of the mapping f. A topology on T_g is induced by this metric.

Let *n* be a positive integer and P_0 be a point of *S*. If no meromorphic function exists on *S* having as its only singularity a pole of order *n* at P_0 , we say that *n* is a gap value at P_0 , or that the point P_0 has a gap value *n*. It is known that there exist exactly *g* gap values at each point P_0 . A point P_0 is called a Weierstrass point of *S* if it has a gap value *n* greater than *g*. There are only a finite number of Weierstrass points on *S*. Consequently, except a finite number of points on *S*,

Received February 11, 1965.