NOTE ON A COUSIN-II DOMAIN OVER C^2

By Joji Kajiwara

Dedicated to Professor A. Kobori on his sixtieth birthday

Serre [7] gave a canonical exact sequence

$$0 \rightarrow Z \rightarrow D \rightarrow D^* \rightarrow 0$$

where Z is the additive group of all integers and $\mathbb O$ and $\mathbb O^*$ are, respectively, the sheaves of all germs of holomorphic mappings in a complex plane C and $\mathrm{GL}(1,C)$. Therefore we have an exact sequence of cohomology groups

$$H^1(X, Z) \rightarrow H^1(X, \mathbb{Q}) \rightarrow H^1(X, \mathbb{Q}^*) \rightarrow H^2(X, Z) \rightarrow H^2(X, \mathbb{Q}).$$

Hence $H^1(X, \mathbb{Q}^*)=H^1(X, Z)=0$ and $H^1(X, \mathbb{Q})=H^2(X, Z)=0$ imply, respectively, $H^1(X, \mathbb{Q})=0$ and $H^1(X, \mathbb{Q}^*)=0$. Taking Cartan [3]-Behnke-Stein [1]'s theorem into account, we see that any domain (D, φ) over C^2 with $H^1(D, \mathbb{Q}^*)=H^1(D, Z)=0$ is a domain of holomorphy over C^2 . Therefore, as we remarked in the previous paper [4], Thullen [9]'s example $E=C^2-\{(0,0)\}$ is a Cousin-II domain with $H^1(E, \mathbb{Q}^*)\neq 0$. In the present paper we shall prove that any domain (D, φ) over C^2 satisfies $H^1(D, \mathbb{Q}^*)=0$ if and only if (D, φ) is a domain of holomorphy over C^2 with $H^2(D, Z)=0$. Therefore any Cousin-II domain (D, φ) over C^2 which is not a domain of holomorphy over C^2 is always an example of a Cousin-II domain with $H^1(D, \mathbb{Q}^*)\neq 0$.

Let φ be a holomorphic mapping of a complex manifold D in C^n such that φ is locally a biholomorphic mapping. Then (D, φ) is called a *domain over* C^n . Let (D_1, φ_1) and (D_2, φ_2) be domains over C^n . If there exists a holomorphic mapping λ of D_1 in D_2 such that $\varphi_1 = \varphi_2 \circ \lambda$, (D_1, φ_1) is called a *domain over* (D_2, φ_2) . Moreover, if there exists a neighbourhood U of x for any $x \in D_2$, such that λ is a biholomorphic mapping of each connected component of $\lambda^{-1}(U)$ onto U, then (D_1, φ_1) is called a *covering manifold of* (D_2, φ_2) . For any domain (D, φ) over C^n , we can uniquely construct a covering manifold $(D^{\sharp}, \varphi^{\sharp})$ of (D, φ) such that the fundamental group $\pi_1(D^{\sharp})$ of D^{\sharp} vanishes. This $(D^{\sharp}, \varphi^{\sharp})$ is called a *universal covering manifold of* (D, φ) . If (D, φ) coincides with its universal covering manifold, (D, φ) is called *simply connected*.

LEMMA 1. Let (D, φ) be a domain over C^n and (D', φ') be its covering manifold. Then (D, φ) is a domain of holomorphy over C^n if and only if (D', φ') is a domain of holomorphy over C^n .

Received September 1, 1964.