ASYMPTOTIC BEHAVIOR OF SEQUENTIAL DESIGN WITH COSTS OF EXPERIMENTS

By Kazutomo Kawamura

1. Introduction.

We shall consider the two kinds of experiments E_1 and E_2 which have two events "Success S" or "Feilure F". The probabilities of success or failure by the experiments E_1 and E_2 are given by

 $P\{S|E_1\} = p_1, \qquad P\{F|E_1\} = 1 - p_1$ $P\{S|E_2\} = p_2, \qquad P\{F|E_2\} = 1 - p_2$

and

respectively, where we assume that $p_1 \neq p_2$.

Moreover, following to Kunisawa [4], we introduce the notion of costs of experiments, i.e., if we execute the experiment E_1 , it costs c_1 ($c_1>0$), and if E_2 , it costs c_2 ($c_2>0$).

The object of this paper is to discriminate the hypotheses $p_1 > p_2$ or $p_1 < p_2$. What a procedure, with which we repeat the experiments, is optimal, in order to maximize the information of discrimination per unit cost?

According to Chernoff [1] a procedure is given, which maximizes the information, when $c_1 = c_2$.

In this paper we shall show the asymptotic behavior of the procedure which maximizes the information of discrimination per unit cost.

2. Notations and definitions.

Given Θ the two dimensional closed rectangular set $[0, 1] \otimes [0, 1]$, i.e., the set of elements (p_1, p_2) satisfying $0 \leq p_1 \leq 1$ and $0 \leq p_2 \leq 1$. And put

 $H_1 = \{ (p_1, p_2): p_1 > p_2, (p_1, p_2) \in \Theta \},$ $H_2 = \{ (p_1, p_2): p_1 < p_2, (p_1, p_2) \in \Theta \}$ $B_{12} = \{ (p_1, p_2): p_1 = p_2, (p_1, p_2) \in \Theta \}$

and

Then Θ is clearly the sum of sets H_1 , H_2 and B_{12} . Next let $E^{(i)}$ be *i*-th experiment, and define x_i as follows:

Received April 23, 1964.