A DISTORTION THEOREM OF UNIVALENT FUNCTIONS RELATED TO SYMMETRIC THREE POINTS

By Nobuyuki Suita

1. Let Σ be a family of functions $g(z)$ meromorphic and univalent for $|z|$ >1 with Laurent expansion for $|z|>1$ given by

$$
g(z)=z+c_{0}+\frac{c_{1}}{z}+\cdots .
$$

The distortion inequality

$$
\frac{\left(1-r^{-2}\right)^{2}}{4 r^{2}\left(1+r^{-2}\right)^{2}} \leqq \frac{\left|g^{\prime}(z) g^{\prime}(-z)\right|}{|g(z)-g(-z)|^{2}} \leqq \frac{\left(1+r^{-2}\right)^{2}}{4 r^{2}\left(1-r^{-2}\right)^{2}} \quad\left(z=r e^{i \theta}\right)
$$

for $g(z)$ belonging to Σ is easily obtained by combining the classical results. It can be also shown that the left and right equalities are attained by the functions $z+e^{i 2 \theta} z^{-1}$ and $z-e^{i 2 \theta} z^{-1}$ respectively.

We are concerned in the present paper with an analogous problem relating to symmetric three points $z, z e^{i 2 \pi / 3}$ and $z e^{24 \pi / 3}$. Analogous bounds will be obtained and the extremal functions will be closely connected with the above two functions. We remark that a known coefficient inequality $\left|c_{2}\right| \leqq 2 / 3$ can be proved from our theorem with respect to $\Sigma([2],[5],[6])$ and that a distortion theorem of this type relating to four points cannot be obtained by using elementary functions as extremal functions. We use Jenkins' general coefficient theorem ([3], [4]) to prove our theorem and make a slight discussion to verify the extremal functions.
2. We now state the theorem.

Theorem. For all functions $g(z)$ belonging to Σ the inequalities

$$
\begin{aligned}
\frac{\left(1-r^{-3}\right)}{3 \sqrt{3} r^{3}\left(1+r^{-3}\right)^{3}} & \leqq \frac{\left|g^{\prime}(z) g^{\prime}(z \omega) g^{\prime}\left(z \omega^{2}\right)\right|}{|g(z)-g(z \omega)|\left|g(z \omega)-g\left(z \omega^{2}\right)\right|\left|g\left(z \omega^{2}\right)-g(z)\right|} \\
& \leqq \frac{\left(1+r^{-3}\right)^{3}}{3 \sqrt{3} r^{3}\left(1-r^{-3}\right)^{3}}
\end{aligned}
$$

hold where $z=r e^{i \theta}, r>1$ and $\omega=e^{i 2 \pi / 3}$. The left equality occurs only for the function $g(z)=z\left(1+e^{i 3 \theta} z^{-3}\right)^{2 / 3}+k$ and the right only for the function $g(z)$ $=z\left(1-e^{i 3 \theta} z^{-3}\right)^{2 / 3}+k$ with k as an arbitrary constant.

Proof. We first prove the left inequality. We set $R_{\rho}=r\left(1+r^{-3}\right)^{2 / 3} \omega^{j}$, $j=0,1,2$, and consider a quadratic differential

Received October 29, 1961.

