ON GENERALIZED UNISERIAL ALGEBRAS OVER A PERFECT FIELD

By Shigemoto Asano

Let A be a ring with a unit element satisfying the minimum condition; let N be the radical of A. We call A a generalized uniserial ring if every indecomposable left [right] ideal of A possesses only one composition series. A generalized uniserial algebra over a field F is defined similarly. Recently H. Kupisch [3] discussed such rings and proved that a (two-sided) indecomposable generalized uniserial algebra over an algebraically closed field is completely determined up to isomorphism by a certain system of invariants. In the present note we shall generalize his method to the case of algebras over a perfect field, starting from the fact that the residue class algebra $\bar{A}=A / N$ of a (two-sided) indecomposable generalized uniserial algebra A over a field F (modulo the radical N) has the structure $B \times{ }_{F} D$, where B is a split semisimple algebra over F and D is a division algebra over F.

Notations. Let

$$
A=\sum_{\kappa=1}^{k} \sum_{\imath=1}^{f(\kappa)} A e_{\kappa, \imath}=\sum_{\kappa=1}^{k} \sum_{\imath=1}^{f(\kappa)} e_{\kappa, 2} A
$$

be a decomposition of A into direct sum of indecomposable left [resp. right] ideals; $e_{\kappa, 2}(1 \leqq \kappa \leqq k, 1 \leqq i \leqq f(\kappa))$ are mutually orthogonal primitive idempotents; $A e_{\kappa, 2} \cong A e_{\lambda, \jmath}$ if and only if $\kappa=\lambda ; e_{\kappa}=e_{\kappa, 1}, E_{\kappa}=\sum_{\imath} e_{\kappa, \imath}$, and $E=\sum_{\kappa} E_{\kappa}$ is the unit element of $A . \quad c_{\kappa, \imath \jmath}(1 \leqq \kappa \leqq k, 1 \leqq i, j \leqq f(\kappa))$ be a system of elements of A such that $c_{\kappa, i i}=e_{k, \imath}, c_{\kappa, 2 j} c_{\kappa, k l}=\delta_{j k} c_{\kappa, i l} ; g(A)=k$ be the number of simple constituents of $\bar{A}=A / N . \quad V=V^{(0)} \supset V^{(1)} \supset \cdots \supset V^{(d)}=0$ be the upper Loewy series of an A-left module V; here $V^{(m)}=N^{m} V . \quad V=V_{(d)} \supset \cdots \supset V_{(1)} \supset V_{(0)}=0$ be the lower Loewy series of V; here $V_{(m)}=\left\{v \mid v \in V, N^{m} v=0\right\} . d(V)=d$ be the length of the upper and lower Loewy series of $V ; d(A)=\rho$ is the index of N, i. e. $N^{\rho-1} \neq 0, N^{\rho}=0$.

1. A certain system of generators of composition factor modules of a twosided composition series of a generalized uniserial ring.

Let A be a generalized uniserial ring and let N be its radical. We first consider an (A, A) composition series of A, which is a refinement of the series $A \supset N \supset N^{2} \supset \cdots \supset N^{\rho}=0:$

$$
\begin{equation*}
A=z_{0}^{0} \supset z_{1}^{0} \supset \cdots \supset \gamma_{r_{0}}^{0}=N=z_{0}^{1} \supset \cdots \supset z_{r_{1}}^{1}=N^{2}=z_{0}^{2} \supset \cdots \supset \gamma_{r_{\rho-1}-1}^{o-1}=N^{\rho}=0 . \tag{1}
\end{equation*}
$$

Received June 8, 1961.

