ON THE SYSTEM OF INTEGRAL EQUATIONS OF VOLTERRA TYPE WITH INFINITELY MANY UNKNOWN FUNCTIONS

BY TAKAO SUZUKI

The purpose of this paper is to consider the continuous solutions of an enumerably infinite system of integral equations of Volterra type with singularity; that is, the equations

(A)

$$x U_{j}(x) = \int_{0}^{x} \sum_{k} a_{jk}(x, t) U_{k}(t) dt + b_{j}(x), \text{ or equivalently,}$$

$$= \int_{0}^{x} F_{j}(x, t, U_{1}(t), U_{2}(t), \cdots) dt + b_{j}(x) \quad (j = 1, 2, \cdots, \infty)$$

Here we shall define, whenever

$$x U(x) = \int_0^x F(x, t, U(t)) dt,$$

that

$$U(0) = \lim_{x \to 0} \frac{1}{x} \int_0^x F(x, t, U(t)) dt.$$

In this paper we shall discuss the existence of continuous solutions of the above system by an argument similar to that used by Pogorzelski in [2], and apply the result to differential and integral equations.

In the first place, we shall state the following Property-N of normaldeterminant and the theorem on which we base our argument.

Normal-determinant (N-determinant) [3]. An infinite determinant

$$|(\mathbf{A})| = |(\delta_{jk} + a_{jk})| \ (j, k = 1, 2, \cdots),$$

where δ_{jk} is the Kronecker symbol, is called an normal- or an N-determinant if $S = \sum_{j,k} |a_{jk}|$ converges. The fundamental theorem on the solution of an infinite system of linear equations reads as follows:

Property-N: In the infinite system of linear equations

$$\sum_{k=1}^{\infty} (\delta_{jk} + a_{jk}) x_k = b_j \quad (j = 1, 2, \cdots),$$

suppose that the determinant |(A)| is normal and distinct from zero, and that $|b_j| < b \ (0 < b < \infty; j = 1, 2, \cdots)$. Then among all bounded sequences of numbers (x_1, x_2, \cdots) there exists one and only one solution given by

$$x_j = \sum_k b_k |(D_{kj})|/|(\mathbf{A})|$$
 $(j = 1, 2, \dots),$

where $|(D_{kj})|$ is the co-factor of $\delta_{kj} + a_{kj}$ in |(A)| for every k.

Received September 2, 1960.