ON CONTINUABILITY OF BILINEAR DIFFERENTIALS

BY AKIKAZU KURIBAYASHI

Schiffer and Spencer [3] have derived a condition under which bilinear differentials are continuable. In this paper, applying the results due to Aronszajn [1], we shall give a condition in terms of positive definite kernels.

Let D be a domain in the z-plane. A function $\psi(z,\overline{\zeta})$ of $z,\zeta\in D$ is called a Hermitian kernel on D, if it satisfies $\psi(z,\overline{\zeta})=\psi(\zeta,\overline{z})$. If for any points $y_1,y_2,\dots,y_n\in D$ and any complex numbers ξ_1,ξ_2,\dots,ξ_n the inequality

$$\sum_{i,j=1}^{n} \psi(y_i, \overline{y}_j) \xi_i \overline{\xi}_j \ge 0 \qquad (n=1, 2, \cdots)$$

is satisfied, then $\psi(z, \bar{\zeta})$ is called a positive definite kernel on D. Further, we denote by P_D the aggregate of all positive definite kernels $\psi(z, \bar{\zeta})$, which are analytic in z, $\bar{\zeta}$ respectively. Let ψ , $\varphi \in P_D$. We denote $\varphi \ll \psi$ if for any points $y_1, y_2, \dots, y_n \in D$ and any complex numbers $\xi_1, \xi_2, \dots, \xi_n$

$$\sum_{i,j=1}^n \psi(y_i,\,\overline{y}_j)\xi_i\xi_j - \sum_{i,j=1}^n \varphi(y_i,\,\overline{y}_j)\xi_i\xi_j \ge 0 \qquad (n=1,\,2,\,\cdots).$$

Now, generally, the following lemma is well known (cf. [4]).

LEMMA 1. Let E be an abstract set. If a function k(x, y) of $x, y \in E$ satisfies

$$\sum_{i,j=1}^{n} k(y_i, y_j) \bar{\xi}_i \xi_j \ge 0 \qquad (n = 1, 2, \dots)$$

for any points $y_1, y_2, \dots, y_n \in E$ and any complex numbers $\xi_1, \xi_2, \dots, \xi_n$, we can construct a Hilbert space which has k(x, y) as its reproducing kernel.

Proof. Let F_1 be the family of functions f_1 which are of the form

$$f_1(x) = \sum_{j=1}^n \alpha_j k(x, y_j)$$

where y_1, \dots, y_n are any points of E, a_1, \dots, a_n any complex numbers and n any natural number. Let the inner product be defined by

$$(f_1,\,g_1) = \sum_{\substack{j_1, i=1 \ j_i \neq 1}}^{\max(m,n)} lpha_j \mathcal{T}_i k(u_i,\,y_j), \qquad (f_1,f_1) = \|f_1\|^2,$$

where

Received July 10, 1958.