THEOREMS ON SUBHARMONIC FUNCTIONS IN THE UNIT CIRCLE

By Yoshiro Kawakami

1. Let l_{φ} be a line through $e^{i\theta}$, making an angle φ $(-\pi/2 < \varphi < \pi/2)$ with the inner normal of z = 1 at $e^{i\theta}$. Then M. Tsuji [1] proved the following theorem.

THEOREM. Let

$$w(z) = \int_{|a|<1} \log \left| \frac{1-\bar{a}z}{z-a} \right| d\mu(a),$$

where

$$\mathcal{Q}(r) = \int_{|a| < r} d\mu(a) = O\left(\frac{1}{(1-r)^{\lambda}}\right), \qquad 0 < \lambda < 1.$$

Then there exists a set E of measure 2π on z = 1, such that if $e^{i\theta} \in E$, then for almost all ψ ,

$$\lim_{z\to e^{i\theta}}w(z)=0,$$

when $z \rightarrow e^{i\theta}$ along $l_{\psi}(e^{i\theta})$.

Let u(z) be a subharmonic function in |z| < 1 such that

$$\int_0^{2\pi} u(re^{i\theta}) d\theta = O(1), \qquad \qquad 0 \leq r < 1,$$

and put

$$L(u,r) = -\frac{1}{2\pi} \int_0^{2\pi} u(re^{i\theta}) d\theta,$$

then L(u, r) is an increasing convex function of $\log r$, and Tsuji proved the following theorem.

THEOREM. Let u(z) be a subharmonic function in |z| < 1, such that

$$\int_0^{2\pi} |u(re^{i\theta})| d\theta = O(1), \quad \frac{d}{dr} L(u,r) = O\left(\frac{1}{(1-r)^{\lambda}}\right), \quad 0 < \lambda < 1.$$

Then there exists a set E of measure 2π on z = 1, such that if $e^{i\theta} \in E$, then for almost all ψ ,

$$\lim_{z\to e^{i\theta}} u(z) = u(e^{i\theta}) \neq \infty$$

exists, when $z \rightarrow e^{i\theta}$ along $l_{\Psi}(e^{i\theta})$.

Received December 10, 1956.