By Yuzo U＇SUMI

The concept of primal ideals， introduced by L．Fuchs（3）for com－ mutative rings and generalized by C．W．Curtis（2）to integral nodular lattice ordered semigroups with as－ cending chain condition，shall be extended in this paper to modular lattices with maximum condition by our method in（4）．

$\S 1$.

Let I be a modular lattice with ascending chain condition and © be a set of lattice congruences on I sucn that any meet of a finite number of congruences in Θ is also in © ．We denote by a（ θ ）the greatest element congruent to an eje－ ment a by a congruence θ on L 。 The set of elements x satisfying $x(\theta)=1$ is denoted by $K(\theta)$ ．An element q is said to be primary（with respect to Θ ）if $q \in x(\theta)$ or $q=q(\theta)$ for everv θ in Θ ． An element a is called to be primal （with respect to Θ ）ii $a\left(\theta_{1} \cap \theta_{2}\right.$ ） $=a$ implies $a\left(\theta_{1}\right)=a$ or $a\left(\theta_{2}\right)=a$ for θ_{1} and θ_{2} in Θ ．

Theorem 1．l．Any primary element is primal．

Proof．Let q be a primary element． $q\left(\theta_{1}\right)>q$ and $q\left(\theta_{2}\right)>q$ imply $q\left(\theta_{1}\right)=1, q\left(\theta_{2}\right)=1$ and $1>q$ ， that is，$q\left(\theta_{1} \cap \theta_{2}\right)=1>q$ 。

Theorem 1．2．Any meet－irreducible olement is primal．

Proof．If an elerent a is not primal then a（ $\left.\theta_{1} \cap \theta_{2}\right)=a$ ， $a\left(\theta_{1}\right)>a$ and $a\left(\theta_{2}\right)>$ a for some
θ_{1}, θ_{2} in 0 ：Since a $\left(\theta_{1}\right) \cap$ $a\left(\theta_{2}\right\}=a\left(\theta_{1} \cap \dot{\theta}_{2}\right)=a$ ，a is meet－ reducible。

In a meet of elements of I ，if we can not replace any component by a element greater than j．t，we call the meet to be reduced．An irredun－ dant meet of primal ejements is said to be shortest if any meet of two or more components is not primal．Re－ duced and shortest meets are normal．

Theorem 1．3．Let $a=a_{1} n a_{2} \cap \ldots$ $n a_{n}$ be a reduced meet．Then $a(\theta)$

Proof．By the theorem jo3． $a(\theta)=a$ ensures that $a_{i}(\theta)=a$ for $i=1,2, \ldots, n$ ．If the condition is satisfied then a is primal by the definition．If $j t$ is not satisfied then there are θ_{i} such that $a_{i}\left(\theta_{i}\right)$ $=a_{i}$ and $a\left(\theta_{i}\right)>a$ for $i=1,2$ ， $\ldots, n^{\circ} \quad a \leq a\left(\theta_{1} \cap \theta_{2} \cap \ldots \cap \theta_{n}\right) \leq$ $a\left(\theta_{i}\right) \leqslant a_{i}\left(\theta_{i}\right)=a_{i}$ ．Hence $a\left(\theta_{1} \cap\right.$ $\left.\theta_{2} \cap \ldots \cap \theta_{n}\right)=a$ ．If a were primal then $a\left(\theta_{i}\right)=a$ for some i which is a contradiction．

Theorem：］．5．Any ejement i．s ex－ pressible as a normal meet of a finite number of primal elements．

Proof．First，i．f we represent the ejement as an irredundant meet of meet－irreducible ejements，it is necessarily reduced．Next，by the Theorem 1．4．，grouping its suitable components we obtain a shortest meet． It is easy to see the reducibility of this meet．（Only here we use the modularity of L_{0} ）

[^0]
[^0]: For any element a，the set of θ in Θ satisfying $a(\theta)=a$ is a M－ closed subset of Θ which denoted by $M(a)$ ．It is well known that the set of all N－closed subsets in Θ forms a distributive lattice，by set－ inclusion，to which we refer as $M(\Theta)$ ． The derinition shows that an element a is primal if and only if $M(a)$ is meet－irreducible in $M_{1}(\Theta)$ ．If $a=$ $a_{1} \cap a_{2} \cap \ldots \cap a_{n}$ is a normal meet oi primal a_{i} ，then，by the theorem

