A GENERALIZATION OF ABSOLUTE NEIGHBORHOOD RETRACTS

By Hiroshi NOGUCHI

- l. In this paper we give some generalization of absolute neighborhood retracts ¹ [1]. This generalization is not useful on homotopy theory but admits some generalizations on fixed point properties of A'Rsets (section 4). In sections 2 and 3 the familiar definitions and theorems of ARsets and ANRsets are described with the slight modifications.
- 2. In the following a space and a set are always separable metric.
- (2.]) DEFINITION. Given the number \mathcal{E}' , $\mathcal{E}' > 0$, and the sets A and B such that B C A we say that a map $r_{\mathcal{E}}'$ is an \mathcal{E}' -retraction provided $r_{\mathcal{E}'}$ is defined and continuous on A, $r_{\mathcal{E}'}$ (B) C B and $r_{\mathcal{E}'}$ (A) C B, and $\S(b, r_{\mathcal{E}'}, (b)) < \mathcal{E}'$ 2) for every $b \in B$. If such maps exist for every $\mathcal{E}' > 0$, then B is called an \mathcal{E} -retract of A.
- (2.2) DEFINITION. Given the sets A and B such that B \subset A, we say that B is an ε -neighborhood retract of A provided there exists an open set U such that B \subset U \subset A and such that B is an ε -retract of U.
- (2.3) DEFINITION. A space, A, is called an \mathcal{E} -absolute neighborhood retract (\mathcal{E} -ANR or \mathcal{E} -ANRset) provided it is a compactum and for every topological image A_1 of A, such that A_1 is contained in a space M, we have A_1 is an \mathcal{E} -neighborhood retract of M.
- (2.4) THEOREM. A necessary and sufficient condition for a set to be an £-ANN is that it be homeomorphic to a closed £-neighborhood retract of the Hilbert parallelotope Q.
- PROOF. Necessity. Let A be an \mathcal{E} -ANR. Since A is a compactum, we can map A topologically into the Hilbert parallelotope Q [5]. Let h(A) = A₁, where h is a homeororphism and A₁ is a subset of Q. Since Q is a compactum, by (2.3) A₁ is an \mathcal{E} -neighborhood retract of Q. In virtue of the continuity of h and the compactness of A, we have A₁ is compact and therefore closed in \mathbb{Q} .

Sufficiency. Let $h(A) = A_1$, where h is a homeomorphism and A_1 is a closed \mathcal{E} -neighborhood retract of \mathbb{Q} . Consider any other homeomorphic image A_2 of A such that A_2 is contained in a space M. Let $k(A) = A_2$, where k is a homeomorphism. \mathbb{Q} is a compactum. Therefore A_2 is a compactum and hence closed in M. We now apply Tietze's extension theorem [5] to the map $hk^{-1}: A_2 \longrightarrow \mathbb{Q}$ and obtain an extension f of hk^{-1} over \mathbb{N} relative to \mathbb{Q} . Since A_1 is an \mathcal{E} -neighborhood retract of \mathbb{Q} , there exists an open set $\mathbb{U}_1 \longrightarrow A_1$ and for each $\mathcal{E}' \supset \mathbb{Q}$ and obtain an open subset of M and clearly $f^{-1}[f(M) \cap \mathbb{U}_1]$ is an open subset of M and clearly $f^{-1}[f(M) \cap \mathbb{U}_1]$ into A_2 . Since A_2 is compact, for sufficiently small \mathcal{E}' by uniform continuity of $kh^{-1}r_{\ell}$ ' f we have

9 (a, th-11: f(a)) (E for every a & A2,

where ξ is any giving positive number. Thus A_2 is an ξ -neighborhood retract of M.

- (2.5) DEFINITION. A space, A, is called an \mathcal{E} -absolute retract (\mathcal{E} -AR or \mathcal{E} -ARset) provided it is a compactum and for every topological image A_1 of A, such that A_1 is contained in a space N, we have A_1 is an \mathcal{E} -retract of M.
- (2.6) THEOREM. A necessary and sufficient condition for A to be an ε-AR is that it be homeomorphic to a closed ε-retract of the Hilbert parallelotope Q.

This result may be verified by the method of (2.4).

- (2.7) In (2.4) and (2.6) when the dimension of A is finite we can replace ξ by a sufficiently high dimensional Euclidean space. Naturally every ANR(AR) set is an ξ -ANR(ξ -AR) set.
- (2.8) EXAMPLE. In two-dimensional Euclidean space we consider next set A in a rectangle x-y coordinate.