
Abstract

It is well known that, in a Noetherean ring, every ideal can be written as an intersection oi prinary ideals. The theorem was extended by M. Ward and R.P.Dilworth to integral modular lattice ordered senigroups with maximum condition. ([2], [3]) The purpose of this paper is to discuss it for modular lattices with maximurn condjtion.

ξ I. Delinitions.

Let L be a modular lattice with maximum condition and © be a set of congruences on L such that every meet of contruences in \oplus is also in (4) For a congruence θ the class containing an element a is denoted by $\theta(a)$ and the greatest element of $\theta(a)$ by a_{θ}.

Definition I. An element q of L is primary (with respect to Θ) if and only if $q=q_{\theta}$ or $q \equiv I(\theta)$ for every θ in Θ.

Definition 2. A congruence θ in Θ is a radical. (with respect to (\oplus); or an eiement a in L ir and only if θ is the smallest one among the congruences by which a is congruent to I.

The radical of a is denoted by $\rho(a)$. Evidentiy, $\theta \geq \rho(a)$ if and only if $a \equiv I(\theta)$. For a primary element q we have $q \equiv I$ (θ) il $\theta \geqslant p(q)$, and $q_{\theta}=q$ if $\theta \not p(q)$.

Derinition 3. By a short representation (with respect to (*)) oi an element a in L, it is meant a representation oi' a as an irredundant meet of a ilinite number of primary elemonts all of which radicals are dif'erent.

Delinition 4. A congruence on L is said to be neutrel if (a) the ciass containing I is a noutral dual ideal ([I]) and (b) a is conesruont to b it and only if $a_{n} x=t_{n} y$ ior some x und y congruent to I.
§2. UNIQUNESS
Lemmu I. $\left(a_{\wedge} f\right)_{\theta}=a_{\theta \wedge}$.
Theoreni I. Let $a=q_{1} \cap q_{z} \wedge \cdot \wedge q_{n}$ where every q_{i} be primary and $\hat{\theta}_{\theta} q_{n}$
 \cdots, r and $q_{x} \equiv I(\theta)$ lor $k=r+1$, \cdots, n then $a_{\theta}=q_{1} \cap q_{2 n} \cap q_{r}$

Prool. By the assumption, $q_{r+1} n$ $\cap q_{n} \equiv I(\theta)$ and hence $a=q_{1} \wedge q_{2} \wedge \cdots$
$\cdots q_{r r}(\theta)$. But $q_{j} \theta=q_{j}$ I'or $j=1,2$, \cdots, r... Thus $a_{\theta}=q_{1 \theta} \cap q_{2 \theta \cap} \wedge q_{r} \theta$ $=q_{1} q_{2 \sim}{ }^{\circ} \wedge q_{r}$

Theorem 2. In two short representations oi an element a in L the radicals of the components coincide.

Prool. Assume, two short representations $a=q_{1} \wedge q_{x} \wedge \cap q_{x}=q_{i}^{\prime}$ $\wedge q_{2}^{\prime} \wedge$.. $\wedge q_{m}^{\prime}$ are given. Let the minimal one among the $p\left(q_{0}\right)$ and $p\left(q_{j}^{\prime}\right)$ be, say, $p\left(q_{1}\right)=\theta$. Now $a_{\theta}=q_{1 \theta \cap} q_{2 \theta} n$ $n q_{n \theta}=q_{1}^{\prime} \theta \wedge q_{2 \theta}^{\prime} q_{1} . q_{m \theta}^{\prime}$. If every $p\left(q_{j}^{\prime}\right)$ were diflerent from θ then $q_{2} n \ldots$ $\cdots \cap q_{n}=q_{1}^{\prime} \cap q_{2}^{\prime} \cap \cdots \cap q_{m}^{\prime}=a$ which contradicts our assumption. Hence among the
$p\left(q_{j}^{\prime}\right)$ some one, say, $p\left(q_{1}^{\prime}\right)$ is equal to θ. Wh nce $q_{2} \wedge \cdots \wedge q_{n}$ $=q_{2 \wedge}^{\prime} \wedge \wedge q_{m}^{\prime}$ which completes the proor by the inite induction.

§3. DECOMPOSABILITY

Theorem 3. A meet of a linite number of primary ejoments which have the same radicals is also primary and has the same radical.

Proof. Assume, q_{1}, q_{2}, q_{n} are prinary and $p\left(q_{1}\right)=q^{\prime}\left(q_{2}\right)=. \quad q_{n}=p\left(q_{n}\right)$ Iet θ be in Θ. If $\theta<p\left(q_{1}\right)$ then $q_{i} \equiv I(\theta)$ ror $i=1,2, \quad, n$ Hence $q_{1} \wedge q_{2} \cap \cdots \cap q_{n} \equiv I(\theta)$. But, il $\theta \neq P\left(a_{1}\right) \quad$ then $q_{i}=q_{i}$ fior $i=1,2$,
\cdots, n. Thus $\left(q_{1} \cap q_{2} \wedge \cdots, q_{n}\right)_{\theta}=q_{1} \cap q_{2} \cap \cdots$ $\cdots \cap q_{n}$. Whence $q_{1} \cap q_{2} \cap q_{1} \cdots \cap q_{n}$ is primary. $N \in x t, q_{1} \cap q_{2} \cap$. $q_{n} q_{n}=I\left(p\left(q_{1}\right)\right.$ since $q_{i} \equiv I\left(\rho\left(q_{1}\right)\right) \quad$ But, $i \hat{i}$ $q_{1} \cap q_{2} n \cdots \wedge q_{x} \equiv I(\varphi)$ lor sorice φ in $\boldsymbol{q}_{(4)}$ therna iortioni $q_{1}=I(\phi)$ thus $p\left(q_{1}\right) \leq \varphi$. Hence $q_{1} \cap q_{2} \cap \cdots \cap q_{n}$

Theorem 4. An irrodundant muet Of a l'inite number of primary elemonts of which not all have the same radicals is not primury.

Prool. Wo may assumes by th. 3 that all the radicals of primary coriponents are different. Let $a=q_{1} \cap q_{2 n}$.
n q_{n} be irrediundant where q_{i} be primary. If the minimal one among
$\rho\left(q_{i}\right)$ is, say, $\rho\left(q_{1}\right)=\theta$ then

